期刊文献+

基于脉冲扰动作用下的一个捕食者-食饵模型的动力学性质 被引量:3

The Dynamics of a Predator-Prey Model Concerning Impulsive Perturbations
下载PDF
导出
摘要 基于害虫的生物控制和化学控制策略,考虑到化学杀虫剂对天敌的影响,利用脉冲微分方程建立了在不同的固定时刻分别喷洒杀虫剂和释放天敌的具有依氏(Ivlev)功能性反应的捕食者-食饵脉冲动力系统.证明了当脉冲周期小于某个临界值时,系统存在一个渐近稳定的害虫根除周期解,否则系统是持续生存的.通过分析表明如果采取有效的化学控制策略,那么这种综害虫合控制策略更有效. In this paper, considering biological control and chemical control strategy and the effects of chemical pesticides on natural enemy, we propose a predator-prey model with Ivlev's functional response by using impulsive differential equation. It is proved that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. Otherwise, the system can be permanent. We obtain that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.
出处 《生物数学学报》 CSCD 北大核心 2006年第4期509-514,共6页 Journal of Biomathematics
基金 国家自然科学基金资助(10671001)项目
关键词 脉冲扰动作用 依氏(Ivlev)功能性反应 持续生存 灭绝 Impulsive perturbation Ivlev's functional response Permanence Extinction
  • 相关文献

参考文献6

  • 1Barclay H J.Models for pest control using predator release,habitat management and pesticide release in combination[J].J Applied Ecology,1982,19:337-348.
  • 2Freedman H J.Graphical stability,enrichment,and pest control by a natural enemy[J].Math Biosci,1976,31:207-225.
  • 3Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
  • 4Bainov D D,Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Applications[M].New York:John Wiley & Sons,1993.
  • 5Kooij R E,Zegeling A.A predator-prey model with Ivlev's functional response[J].J Math Anal Appl,1996,198:473-489.
  • 6Sugie J.Two-Parameter bifurcation in a predator-prey system of Ivlev type[J].J Math Anal Appl,1998,217:349-371.

同被引文献7

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部