期刊文献+

最小二乘向量机在说话人识别中的应用 被引量:1

Application of LS-SVM in Speaker Recognition
下载PDF
导出
摘要 说话人识别是语音识别的一种,是当前的研究热点之一。而基于统计学习理论的支持向量机(SVM)方法是一种新的机器学习算法,已成为机器学习研究的热点。讨论了一种改进的SVM即最小二乘向量机(LS-SVM)的方法进行说话人识别研究。研究表明,基于LS-SVM的说话人识别比传统的SVM说话人识别计算复杂度小、效率更高、对说话人识别有很强的适应性。 Speaker recognition is regarded as a kind of voice recognition. It is one of the current research hotspots. The support vector machines(SVM) based on ethe statistical learning theory is a new machine learning algorithm as the hotspots of machine learning research. An improved SVM,the least square support vector machines(LS - SVM) is discussed in this paper. The experimental results demonstrate that the LS - SVM- based speaker recognition is less computational complexity and more effient than the SVM- based speaker recognition. Then it has high adaptability for the speaker recognition.
作者 但志平 郑胜
出处 《计算机技术与发展》 2007年第5期30-32,36,共4页 Computer Technology and Development
关键词 说话人识别 最小二乘向量机 核函数 线性预测 speaker recognition least square support vector machines kernel function linear predictive coding
  • 相关文献

参考文献6

  • 1Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20:273-297.
  • 2Burges C J C.A tutorial on support vector machines for pattern recognition[J].Knowledge Discovery and Data Mining,1998,2:121-167.
  • 3张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 4Suykens J A K,Vandewalle J.Least squares support vector machine classfiers[J].Neural Processing Letters,1999,9:293 -300.
  • 5Furui S.Cepstral analysis technique for automatic speaker verication[J].IEEE Trans Acoust,Speech,Signal Processing,1981,29(4):254-272.
  • 6Smits G F,Jordan E M.Improved SVM Regression using Mixtures of Kemels[J].IEEE,2002,3:2785-2790.

二级参考文献1

共引文献2272

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部