摘要
多尺度几何分析中的Contourlet变换可以实现灵活的多分辨、多方向图像表示,但是由于不具有平移不变性,在图像去噪中容易产生伪吉布斯现象,本文应用具有平移不变性且能有效表示图像纹理信息的平稳Contourlet变换,提出了软硬阈值结合的去噪法.试验结果表明该方法有效提高去噪声后图像的PSNR,有效保存图像纹理信息以及更好的视觉效果.
Contourlet transform (CT) is a method of multiscale geometric analysis, which can result in a flexible multri-resolution ,local ,and directional image expansion. But the Controulet transform is not shift- ubvaruabt,that will cause pseudo-Gibbs phenomena around singularities in image denoising. In this paper we apply stationary contourlet transform with shift - invariant to image denosing,which can capture the intrinsic geometrical structure of image. In the test o Image denoising we apply the modified desosing method by threshold. The experimental results show that our method can get higher PSNR value and better visual effect compared with other methods.
出处
《数学理论与应用》
2007年第1期71-74,共4页
Mathematical Theory and Applications
基金
自然科学基金项目资助(60573027)