期刊文献+

保持粒子活性的改进粒子群优化算法 被引量:14

Improving Particle Swarm Optimization by keeping particles activity
下载PDF
导出
摘要 针对基本粒子群优化算法(Particle Swarm Optimization,简称PSO)存在的早熟收敛问题,提出了一种保持粒子活性的改进粒子群优化(IPSO)算法。当粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,使粒子能够有效地进行全局和局部搜索。通过对4种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度,而且能够更有效地进行全局搜索。 To overcome the problem of premature convergence on Particle Swarm Optimization(PSO),this paper proposes an Improved Particle Swarm Optimization(IPSO) called keeping particles active PSO ,which is guaranteed to keep the diversity of the particle swarm.When particles lose activity,this paper uses a special mutation or perturbation to activate particles and to make particles explore the search space more efficiently.Four Benchmark functions are selected as the test functions.The experimental results show that the IPSO can not only significantly speed up the convergence,but also effectively Solve the premature convergence problem.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第11期35-38,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60573141 No.70271050) 安徽省高校青年教师科研资助项目(No.2006jql244)。
关键词 粒子群优化 改进的粒子群优化 进化计算 Particle Swarm Optimization (PSO) Improved Particle Swarm Optimization (IPSO) evolutionary computation
  • 相关文献

参考文献13

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,Perth,Australia,1995:1942-1948.
  • 2Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proc of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43.
  • 3Eberhart R,Shi Y.Particle swarm optimization:developments,applications and resources[C]//Proc Congress on Evolutionary Computation,Piscataway,NJ,2001:81-86.
  • 4Angeline P J.Evolutionary optimization versus particle swarm optimization:philosophy and performance differences[J].Evolufionary Programming,1998,48 (17):1956-1959.
  • 5Shi Y,Eberhart R.Empirical study of particle swarm optimization[C]//Proc of Congress on Computational Intelligence,Washington DC,USA,1999:1945-1950.
  • 6Angeline P.Using selection to improve particle swarm optimization[C]//Proc of IJCNNp99,Washinton,USA,1999:84-89.
  • 7Clere M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proc of the Congress of Evolutionary Computation,Piscataway,NJ,1999:1951-1957.
  • 8Suganthan P,Particle swarm optimizer with neighborhood operator[C]//Proc of Congress on Evolutionary Computation,Piscataway,NJ,1999:1958-1961.
  • 9Shi Y,Eberhart R.Fuzzy adaptive particle swarm optimization[C]//Proc of the Congress on Evolutionary Computation,Seoul,Korea,2001:101-106.
  • 10van den Bergh F,Engelbrecht A.Using cooperative particle swarm optimization to train product unit neural networks[C]//Proc of the Third Genetic and Evolutionary Computation Conference,Washingtong D C,USA,2001:78-82.

同被引文献110

引证文献14

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部