期刊文献+

全规整重网格化三维模型的压缩 被引量:4

Mesh Compression by Uniform Resampling
下载PDF
导出
摘要 通过保形自适应重采样,可将三维网格模型转化为规则排列的二维几何图像,从而可借鉴成熟的图像压缩技术对其进行压缩.提出了保形自适应采样算法,根据网格模型表面的有效顶点分布密度自适应地调整采样网格,并可最大限度地通过原始网格顶点进行采样.在不增加采样率的前提下,该压缩方法所得解压模型具有更小的失真度.通过大量实例对文中方法进行了验证,并与同类方法进行对比.实验结果表明该方法是切实可行的,且具有更好的压缩效果. The 3D mesh model is transformed into geometric image by adaptive shape-preserving resampling, and compressed using the image processing technique. An adaptive shape-preserving resampling algorithm is presented, which adaptively optimizes the sampling planar mesh according to the valid vertex density of the original mesh surface, and the sampling points get across the original vertex to the greatest extent. The compression result achieves high fidelity without increasing the sampling rate. Some examples are used to compare the proposed and the similar method, which shows that our method is feasible and has excellent performance.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第4期436-441,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 江苏省高校自然科学基金(04KJB520142)
关键词 保形自适应采样 网格压缩 几何图像 adaptive shape-preserving sampling mesh compression geometric image
  • 相关文献

参考文献10

  • 1Touma C,Gotsman C.Triangle mesh compression[C] //Proceedings of Graphics Interface 98,Vancouver,1998:26-34
  • 2Eck M,DeRose T,Duchamp T.Multiresolution analysis of arbitrary meshes[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1995:173-182
  • 3Lounsbery M,DeRose T,Warren J.Multiresolution analysis for surfaces of arbitrary topological types[J].ACM Transactions on Graphics,1997,16(1):34-73
  • 4Khodakovsky A,SchrOeder P,Sweldens W.Progressive geometry compression[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New Orleans,Louisiana,2000:271-278
  • 5Gu X F,Gortler S,Hoppe H.Geometry images[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,San Antonio,Texas,2002:355-361
  • 6彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739. 被引量:34
  • 7Desbrun M,Meyer M,Alliez P.Intrinsic parameterizations of surface meshes[J].Computer Graphics Forum,2002,12(3):209-218
  • 8周培德.计算几何--算法设计与分析[M].北京:清华大学出版社,2000..
  • 9Mallat S.A wavelet tour of signal processing[M].San Diego:Academic Press,1998
  • 10张立保,王珂.一种基于整数小波变换的图像编码算法[J].软件学报,2003,14(8):1433-1438. 被引量:33

二级参考文献64

  • 1胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13
  • 2Praun E, SweldensW, Schroder P. Consistent mesh parameterizations[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2001. 179~184
  • 3Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary[J]. Computers & Graphics, 2002, 26(5): 677~686
  • 4Farin G. Curves and Surfaces for Computer Aided Geometric Design[M]. 3rd ed. San Diego: Academic Press, 1993
  • 5Pinkall U, Polthier K. Computing discrete minimalsurfaces and their conjugates[J]. Experimental Mathematics, 1993, 2(1): 15~36
  • 6Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002, 21(3): 209~218
  • 7Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 8Levy B, Mallet J-L. Non-distorted texture mapping for sheared triangulated meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1998. 343~352
  • 9Greiner G, Hormann K. Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product B-Splines[M]. In: Meheute A L, Rabut C, Schumaker L L, eds. Surface Fitting and Multiresolution Methods. Nashville, Tennessee: Vanderbilt University Press, 1997. 163~172
  • 10Kobbelt L P, Vorsatz J, Labisk U, et al. A shrink-wrapping approach to remeshing polygonal surfaces[J]. Computer Graphics Forum, 1999, 18(3): 119~129

共引文献67

同被引文献6

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部