期刊文献+

一类多参数的曲线细分格式 被引量:4

A Class of Curve Subdivision Schemes with Several Parameters
下载PDF
导出
摘要 构造了一类收敛的多参数差分格式,根据细分格式和差分格式的关系以及连续性条件可得到任意阶连续的多参数曲线细分格式.通过选取合适的参数可以得到一些经典的曲线细分格式,如Chaikin格式、三次样条细分格式和四点插值格式等;同时设计了一种C1连续的不对称三点插值格式,可以生成不对称的极限曲线.给出了同阶差分格式线性组合的性质,从而可设计出更多收敛的多参数曲线细分格式. A class of convergent difference schemes with several parameters is proposed. According to the relationship between the subdivision scheme and its difference scheme and the sufficient condition for C^1 continuity, we can devise curve subdivision schemes with arbitrary order continuity. By setting appropriate parameters, some classical curve subdivision schemes such as the Chaikin's scheme, the cubic B-spline scheme and 4-polnt interpolating scheme can be obtained. A C^1-continuous asymmetric 3-point interpolating scheme is also presented to model asymmetric limit curves. Furthermore, the property of the linear combination of the difference schemes of the same order is analyzed, which can help to devise more convergent curve subdivision schemes with several parameters.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第4期468-472,479,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展规划项目(2004CB719403) 国家自然科学基金(60573121) 许国志博士后工作奖励基金
关键词 生成多项式 细分格式 差分格式 generating polynomial subdivision scheme difference scheme
  • 相关文献

参考文献11

  • 1Chaikin G.An algorithm for high speed curve generation[J].Computer Graphics & Image Processing,1974,3(4):346 -349
  • 2Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer-Aided Design,1978,10(6):350-355
  • 3Zorin D,Schr(o)der P.Subdivision for modeling and animation[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New Orleans,Louisiana,2000:Course Notes #23
  • 4Dyn N,Levin D,Gregory J A.A 4-point interpolatory subdivision scheme for curve design[J].Computer Aided Geometric Design,1987,4(4):257-268
  • 5Dyn N,Levin D,Micchelli C A.Using parameters to increase smoothness of curves and surfaces generated by subdivision[J].Computer Aided Geometric Design,1990,7(3):129-140
  • 6Dyn N,Gregory J A,Levin D.Analysis of uniform binary subdivision scheme for curve design[J].Constructive Approximation,1991,7(2):127-147
  • 7Warren J,Weimer H.Subdivision method for geometric design:a constructive approach[M].San Francisco:Morgan Kaufmann Publishers,2001
  • 8Hassan M F,Dodgson N A.Ternary and three-point univariate subdivision schemes[C] //Proceedings of Curve and Surface Fitting:Saint-Malo 2002.Brentwood:Nashboro Press,2003:199-208
  • 9Hassan M F,Ivrissimitzis I P,Sabin M A.An interpolating 4-point C2 ternary stationary subdivision scheme[J].Computer Aided Geometric Design,2002,19(1):1-18
  • 10Romani L.Classifying uniform univariate refinement schemes and predicting their behaviour[C] //Proceedings of MINGLE Workshop,Cambridge,2003:123-134

二级参考文献12

  • 1Dyn N,Gregory JA,Levin D.A 4-point interpolatory subdivision scheme for curve design.Computer Aided Geometric Design,1987,4(4):257-268.
  • 2Deslauriers G,Debuc S.Symmetric iterative interpolation processes.Constructive Approximation,1989,5(1):49-68.
  • 3Kobbelt L.√3 -Subdivision.In:Proc.of the SIGGRAPH 2000.New York:ACM Press,2000.103-112.
  • 4Hassan MF,Dodgson NA.Ternary and three-point univariate subdivision schemes.In:Cohen A,Merrien JL,Schumaker LL,eds.Curve and Surface Fitting:Saint-Malo 2002.Brentwood:Nashboro Press,2003.199-208.
  • 5Hassan MF,Ivrissimitzis IP,Sabin MA.An interpolating 4-point C2 ternary stationary subdivision scheme.Computer Aided Geometric Design,2002,19(1):1-18.
  • 6Dyn N,Gregory JA,Levin D.Analysis of uniform binary subdivision scheme for curve design.Constructive Approximation,1991,7(2):127-147.
  • 7Dyn N,Levin D,Micchelli CA.Using parameters to increase smoothness of curves and surfaces generated by subdivision.Computer Aided Geometric Design,1990,7(2):129-140.
  • 8Dyn N.Analysis of convergence and smoothness by the formalism of Laurent polynomials.In:Iske A,Quak E,Floater MS,eds.Tutorials on Multiresolution in Geometric Modelling.New York:Springer-Verlag,2002.51-64.
  • 9Romani L.Classifying uniform univariate refinement schemes and predicting their behaviour.In:Dodgson NA,Floater MS,Sabin MA,eds.Proc.of the MINGLE 2003.123-134.
  • 10Ivrissimitzis IP,Dodgson NA,Hassan MF,Sabin MA.On the geometry of recursive subdivision.Int'l Journal of Shape Modeling,2002,8(1):23-42.

共引文献6

同被引文献11

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部