期刊文献+

图像检索中一种有效的SVM相关反馈算法 被引量:10

Efficient Relevance Feedback Scheme Based on SVM in Image Retrieval
下载PDF
导出
摘要 提出受限随机选择方法.首先对图像进行相似性排序;然后使用一个阈值限定随机选择的范围;最后在该范围内进行划分,在子范围内通过随机选择来扩大训练样本,较好地解决了小样本问题.另外,动态计算多个SVM分类器的权值,融合分类结果,较好地解决了相关反馈过程中用户的不同喜好问题.实验结果表明了该方法的有效性. An approach called constrained random selection for relevance feedback is proposed in this paper. At first, all the images are sorted by similar measure, and then a threshold is selected to restrict the space of random selection. At last, the restricted space is divided into some sub-spaces, and random selection is applied to these sub-spaces to enlarge the training sets and resolve the small sample problem preferably. In addition, we compute the weights of multiple SVM classifiers dynamically and fuse the single results to resolve the users' preference problems in relevance feedback preferably. Experimental results demonstrate the effectiveness of the method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第4期535-540,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60473002) 国际科技合作重点项目(2005DFA11060) 北京市科技计划项目(D0106008040291)
关键词 受限随机选择 SVM 相关反馈 融合 constrained random selection SVM relevance feedback fusion
  • 相关文献

参考文献14

  • 1Han J,Ngan K N,Li Mingjing,et al.A memory learning framework for effective image retrieval[J].IEEE Transactions on Image Processing,2005,14(4):511-524
  • 2Cox I J,Miller M,Minka T P,et al.The Bayesian image retrieval system,PicHunter:theory,implementation,and psychophysical experiments[J].IEEE Transactions on Image Processing,2000,9(1):20-37
  • 3万华林,Morshed U.Chowdhury,胡宏,史忠植.图像纹理特征及其在CBIR中的应用[J].计算机辅助设计与图形学学报,2003,15(2):195-199. 被引量:45
  • 4Jing Feng,Li Mingjing,Zhang Hongjiang,et al.A unified framework for image retrieval using keyword and visual features[J].IEEE Transactions on Image Processing,2005,14(7):979-989
  • 5Smeulders Arnold W M,Worring Marcel,Santini Simone,et al.Content-based image retrieval at the end of the early years[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380
  • 6Rui Y,Huang T S,Mehrotra S.Relevance feedback:a powerful tool in interactive content-based image retrieval[J].IEEE Transactions on Circuits Systems for Video Technology,1998,8(5):644-655
  • 7Zhou X S,Huang T S.Relevance feedback in image retrieval:a comprehensive review[J].ACM Multimedia Systems Journal,2003,8(6):536-544
  • 8Peng J,Bhanu B,Qing S.Probabilistic feature relevance learning for content-based image retrieval[J].Computer Vision and Image Understanding,1999,75(1/2):150-164
  • 9Rui Y,Huang T S.Optimizing learning in image retrieval[C] //Proceedings of Computer Vision Pattern Recognition,Hilton Head Island,South Carolina,2000:236-243
  • 10何清法,李国杰.综合分块主色和相关反馈技术的图像检索方法[J].计算机辅助设计与图形学学报,2001,13(10):912-917. 被引量:33

二级参考文献17

  • 1Wei Yingma,Handbook of Multimedia Computing,1999年,227页
  • 2Gong Y,IEEE CVPR'98,1998年
  • 3Yee K Tan,IEEE Int Conference on MM Computingand Systems,1998年
  • 4Rui Y,IEEE Trans Circuits and Systems for Video Technology,1998年,8卷,5期,644页
  • 5Chua K Tan,Int Conference on Multimedia Computingand Systems,1997年
  • 6Hsu W,Proceedings of the ACMMM Conference,1995年,305页
  • 7Flichner M, et al. Query by image and video content: The QBIC system[J]. IEEE Computer, 1995, 28(9): 23~32
  • 8Pentland A P, Picard R, et al. Photobook: Content-based manipulation of image databases[J]. Journal of Computer Vision, 1996,18(3): 233~254
  • 9John R Smith, Shih-Fu Chang. VisualSEEk: A fully automated content-based image query system[A]. In:Proceedings of ACM Multimedia'96, Boston, MA, 1996. 87~98
  • 10Yong Rui, Thomal S Huang, et al. Image retrieval: Current techniques, promising directions, and open issues[OL]. http://research.microsoft.com/users/yongrui/html/publication.html, 1999

共引文献75

同被引文献71

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部