摘要
利用重合度方法,研究一类具复杂偏差变元的二阶中立型泛函数分方程[x(t)-∑i=1cix(t-iτ)]″+g(x(t))+g(x(x(t)))=p(t)周期解的存在性,给出了该方程存在周期解的充分性定理.
The existence of periodic solutions to a type of second order neutral functional differential equation [x(t)-∑i=1^ncix(t-τi)]^n+g(x(t))+g(x(x(t)))=p(t)with complex deviating argument is studied by the methods presented in coincidence degree theory. And sufficient conditions of the equation with penocllc solutions are obtained.
出处
《安徽师范大学学报(自然科学版)》
CAS
2007年第2期108-111,115,共5页
Journal of Anhui Normal University(Natural Science)
基金
安徽省自然科学基金(No.050460103)
安徽省教育厅自然科学基金重点项目(2005kj0321zD)资助
关键词
中立型泛函微分方程
周期解
重合度理论
neutral functional differential equation
periodic solution
theory of coincidence degree