期刊文献+

材料的率相关与梯度耦合模型的二维内尺度律研究

Two dimensions study of internal length scales for rate dependent and gradient-dependent models
下载PDF
导出
摘要 利用率相关与梯度塑性耦合本构模型,采用简谐波的分析方法对材料的应变局部化及材料的稳定性进行了研究,得到了二阶耦合模型在二维情况下的内尺度律的变化及其与材料稳定性的关系,得到了波长变化的下界及材料稳定性的条件;在此基础上,结合二阶耦合模型在一维情况下的内尺度律变化的规律,对其进行了对比研究,得到材料变形局部化带在一维与二维条件下的关系公式,这对材料变形局部化带宽的研究有积极意义。 Both rate dependent and gradient-dependent models introduce internal length scales in dynamic initial value problems.The paper studies strain localization and stability of material by simple harmonic motion for rate dependent and gradient-dependent models. The laws of internal length scales and conditions of material stability are obtained at two dimensions condition for two mixture models. And more, formula of strain localization band width at the one and two dimensions conditions is derived.
作者 陈刚 张洪武
出处 《岩土力学》 EI CAS CSCD 北大核心 2007年第4期643-648,共6页 Rock and Soil Mechanics
基金 国家自然科学基金(No.50244015) 辽宁省自然科学基金(No.20032144)的资助
关键词 应变局部化 内尺度律 率相关与梯度耦合模型 strain localization Internal length scales rate dependent and gradient-dependent models
  • 相关文献

参考文献19

  • 1Asaro R J.Mechanics of crystals and polycristals[J].Avd.Appl.Mech.,1983,(23):2-115.
  • 2De Borst R,Muhlhans H B.Gradient-dependent plasticity:Formulation and algorithmic aspects[J].Int.J.Num,Meth,Engng.,1992,(35):521 -539.
  • 3De Borst R,Wang W M,Geers M G D,et al.Material instabilities and internal length scales[M].Barcelona:CIMNE,1997.
  • 4Hill R,Hutchison J W.Bifurcation phenomena in the plate tension test[J].J.Mech.Phys.Solids,1975,23:239-264.
  • 5Hancock J W,Cowing M J.Role of state of stress in crack-tip failure processes[J].Metal Science,1980,14(8):293-304.
  • 6Lasry D,Belytschko T B.Localization limiters in transient problems[J].Int.J.Solids Structures,1988,(24):581 -597.
  • 7Loret B,Prevost J H.Dynamic strain localization in elasto (visco-) plastic solids,Part 1.General formulation and one-dimensionalexamples[J].Comp.Meths.Appl.Mech.Engng.,1990,83:247-273.
  • 8Muhlhas H B,Vardolakis I.The thickness of shear bands in granular materials[J].Geotechnique,1987,37(3):271-283.
  • 9Muhlhaus H B,Aifantis E C.A variational principle for gradient plasticity[J].Int.J.Solids and Sructures,1991,28:845-858.
  • 10Needleman A.Material rate dependence and mesh sensitivity on localisation problems[J].Comp.Meth.Appl.Mech.Eng.,1988,(67):69-86.

二级参考文献25

  • 1Wu F H,J Mech Phys Solids,1984年,32卷,119页
  • 2Bazant Z P, Belytschko, Chang TPT. Continuum theoryfor strain softening[J]. Journal of the EngineeringMechanics Devision American Society of CivilEngineering, 1984, 110: 1 660-1 692.
  • 3Needleman A. Material rate dependence and meshsensitivity in localization problems[J]. ComputerMethods in Applied Mechanics and Engineering, 1988,63: 69-85.
  • 4De Borst R. Simulation of strain localization:areappraisal of the Cosserat continuum[J]. EngineeringComputations, 1991, 8: 317-332.
  • 5Fleck N A, Hutchinson J W. A phenomenological theoryfor strain gradient effects in plasticity[J]. Journal of theMechanics and Physics of Solids, 1993, 41: 1 825-1857.
  • 6Lasry D, Belytschko T. Localization limiters in transientproblems[J]. International Journal of Solids andStructures, 1988, 24:581-597.
  • 7Aifantis E C. On the microstructurai origin of certaininelastic models[J]. Transation ASME Journal ofEngineering Mathematical Technology, 1986, 106:326-330.
  • 8de Borst R, Muhlhaus H B. Gradient-dependent plasticity:formulation and algorithmic aspects[J]. InternationalJournal of Numerical Methods in Engineering, 1992,35:521-539.
  • 9Vardoulakis I, Aifantis E C. Gradient-dependent dilatancyand its implications in shear banding and liquefaction[J].Archive of Applied Mechanics, 1989, 59: 197-208.
  • 10Vardoulakis I, Aifantis E C. A gradient flow theory ofplasticity for granular materials[J]. Acta Mechanica,1991, 87: 197-217.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部