期刊文献+

Kurzweil方程Φ-有界变差解的唯一性 被引量:8

Uniqueness of bounded Φ-variation solutions for Kurzweil equations
下载PDF
导出
摘要 利用由Musielak-Orlicz建立的Φ-有界变差函数理论,引入了Kurzweil方程的Φ-有界变差解,建立了Kurzweil方程的Φ-有界变差解的唯一性定理.这些结果是Kurzweil方程有界变差解唯一性有关已有结果的实质性推广. The uniqueness theorems of the bounded Ф-variation solutions to Kurzweil equations are established by using the functions of bounded Ф-variation that were introduced by Musiclak and these results are essential generalization of uniqueness theorems of bounded variation solutions to Kurzweil equations.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期107-111,共5页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金(10671158) 甘肃省555创新人才工程 西北师范大学科技创新基金
关键词 Kurzweil积分 KURZWEIL方程 Ф-有界变差 唯一性 Kurzweil integral Kurzweil equation bounded Ф-variation uniqueness
  • 相关文献

参考文献13

  • 1KURZWEIL J.Generalized ordinary differential equations and continuous dependence on a parameter[J].Czechoslovak Math J,1957,82(7):418-449.
  • 2KURZWEIL J.Generalized ordinary differential equations[J].Czechoslovak Math J,1958,83(8):360-389.
  • 3KURZWEIL J.Continuous dependence of solutions of differential equations on a parameter[J].Czechoslovak Math J,1957,82(23):568-583.
  • 4SCHWABIK S.Generlized Ordinary Differential Equations[M].Singapore:World Scientific,1992.
  • 5CHEW T S.On Kurzweil generalized ordinary differential equations[J].J Differential Equations,1988,76(2):286-293.
  • 6王琳琳.一类高阶脉冲时滞微分方程的周期解[J].兰州大学学报(自然科学版),2006,42(4):114-118. 被引量:3
  • 7SCHWABIK S.Generlized Volterra integral equations[J].Czechoslovak Math J,1982,107(32):245-270.
  • 8ARTSTEIN Z.Topological dynamics of ordinary differential equations and Kurzweil equations[J].Differential Equations,1977,23:224-243.
  • 9李宝麟,薛小平.x'=g(x,t)+h(t)型方程的拓扑动力系统与Kurzweil-Henstock积分[J].数学学报(中文版),2003,46(4):795-804. 被引量:9
  • 10MUSIELAK J,ORLICZ W.On generalized variations (Ⅰ)[J].Studia Math,1959,18:11-41.

二级参考文献29

  • 1Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 1957, 7: 418-449.
  • 2Kurzweil J., Vorel Z., Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 1957, 23: 568-583.
  • 3Kurzweil J., Generalized ordinary differential equations, Czechoslovak Math. J., 1958, 8: 360-389.
  • 4Gicbrnan I. I., On the reigns of a theorem of N. N. Bogoljubov, Ukr. Mat. Zurnal, 1952, IV: 215--219 (in Russian).
  • 5Krasnoelskj M. A., Krein S. G, On the averaging principle in nonlinear mechanics, Uspehi Mat. Nauk, 1955,3:147-152 (in Russian).
  • 6Schwabik S.: Generalized ordinary differential equations, Singapore: World Scientific, 1992.
  • 7Chew T. S., On kurzwell generalized ordinary differential equations, J. Differential Equations, 1988, 76:286-293.
  • 8Schwabik S., Generalized volterra integral euuations, Czechoslovak, Math. J., 1982, 82: 245-270.
  • 9Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, Differential Equations, 1977, 28: 224-243.
  • 10Musielak J.. Orliez W.. On generalized variations (I). Studia Math., 1959, 18: 11-41.

共引文献28

同被引文献34

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部