摘要
将最小二乘支持向量机引入到小字符集压印字符识别中.首先介绍最小二乘支持向量机的基本原理和主要算法,然后在实验中采用最小二乘支持向量机训练软件,针对标牌上的压印字符的数字集进行仿真,同时与神经网络等其他分类方法进行比较.实验结果表明此方法的识别率较高,在小字符集识别中具有较强的实用性.
This paper presents an application of least squares support vector machines in small-set pressed protuberant character recognition. The theory and algorithms of least squares support vector machines are introduced. Least squares support vector machines are used to train the software in the experiment for simulation of labels' pressed protuberant characters, and compare with the results of neural network classification, et al. Experiment results show that the least squares support vector machines method has high recognition rate and is practical.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第2期125-129,共5页
Journal of Shanghai University:Natural Science Edition
基金
教育部博士点基金资助项目(20060422011)
关键词
最小二乘支持向量机
压印字符
字符识别
least squares support vector machines
pressed protuberant characters
character recognition