期刊文献+

基于最小二乘支持向量机的压印字符识别方法 被引量:2

Pressed Protuberant Character Recognition Based on Least Squares Support Vector Machines
下载PDF
导出
摘要 将最小二乘支持向量机引入到小字符集压印字符识别中.首先介绍最小二乘支持向量机的基本原理和主要算法,然后在实验中采用最小二乘支持向量机训练软件,针对标牌上的压印字符的数字集进行仿真,同时与神经网络等其他分类方法进行比较.实验结果表明此方法的识别率较高,在小字符集识别中具有较强的实用性. This paper presents an application of least squares support vector machines in small-set pressed protuberant character recognition. The theory and algorithms of least squares support vector machines are introduced. Least squares support vector machines are used to train the software in the experiment for simulation of labels' pressed protuberant characters, and compare with the results of neural network classification, et al. Experiment results show that the least squares support vector machines method has high recognition rate and is practical.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期125-129,共5页 Journal of Shanghai University:Natural Science Edition
基金 教育部博士点基金资助项目(20060422011)
关键词 最小二乘支持向量机 压印字符 字符识别 least squares support vector machines pressed protuberant characters character recognition
  • 相关文献

参考文献5

  • 1GE G Y,XU J J,WANG M H.On the study of image characters location segmentation and pattern recognition using LS-SVM[C]//WCICA06,Dalian.2006:9650-9654.
  • 2任俊,李志能.支持向量机在字符分类识别中的应用[J].浙江大学学报(工学版),2005,39(8):1136-1141. 被引量:14
  • 3朱辉,杨扬,颉斌,封筠.SVM在小字符集手写体汉字识别中的应用研究[J].微计算机信息,2004,20(4):74-75. 被引量:19
  • 4SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 5PELCKMANS K,SUYKENS J A K,VAN GESTEL T,et al.LS-SVMlab:a MATLAB/C toolbox for least squares support vector machines[R].Internal Report 02-44,ESAT-SISTA,Leuven,Belgium,2002.

二级参考文献10

  • 1RAUS M, KREFT L. Reading car license plates by the use of artificial neural networks [A]. Proceedings of IEEE 38th Midwest Symposium on Circuits and Systems[C]. Rio de Janeiro: IEEE, 1995: 538-541.
  • 2VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer Verlag,1995.
  • 3GORDAN M, KOTROPOULOS C, PITAS I. Visual speech recognition using support vector machines [A].2002 14th International Conference on Digital Signal Processing [C]. [s. l]: IEEE, 2002:1093 - 1096.
  • 4BASU A, WATTERS C, SHEPHERD M. Support vector machines for text categorization [A]. Proceedings of the 36th Annual Hawaii International Conference on System Sciences[C]. Hawaii:[s. n.], 2003, 103 - 109.
  • 5VAPNIK V N. Statistical learning theory [M]. New York: Wiley, 1998.
  • 6Yunqiang Chen, Xiang Zhou, and Thomas S. Huang,"one-class SVM for learning in image retrieval",In Proc. IEEE Int' l Conf. on Image Processing 2001, Thessaloniki, Greece
  • 7沈会良,李志能.基于矩和小波变换的数字、字母字符识别研究[J].中国图象图形学报(A辑),2000,5(3):249-252. 被引量:36
  • 8魏武,黄心汉,张起森,王敏,王明俊.基于模板匹配和神经网络的车牌字符识别方法[J].模式识别与人工智能,2001,14(1):123-127. 被引量:33
  • 9宋加涛,刘济林.车辆牌照上英文和数字字符的结构特征分析及提取[J].中国图象图形学报(A辑),2002,7(9):945-949. 被引量:41
  • 10杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报(工学版),2003,37(5):521-527. 被引量:119

共引文献31

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部