期刊文献+

基于BP模型的南通市农田土壤重金属空间分布研究 被引量:13

Study on spatial distribution of farmland soil heavy metals in Nantong City based on BP-ANN modeling
下载PDF
导出
摘要 利用采样点实测数据,借助BP神经网络模型并结合GIS技术对江苏省南通市农田土壤重金属的空间动态分布进行了详细地描述。结果表明,BP神经网络模型能够智能地学习各个采样点的空间位置与该点各重金属含量之间的映射关系,并能够稳健地对各个空间插值点处的土壤重金属含量进行预测。运用Arcgis进行的分析结果显示,在该地区Pb和As造成的污染最严重,其他重金属污染相对较轻。其中南通市区、海门市和启东市重金属富集最严重;南通大部、通州、如东大部分地区含量较少,含量最少的地区是如皋市和海安县。在运用神经网络模型进行空间插值了解重金属空间动态分布的基础上,可以根据污染的分布状况确定农产品的生产布局和规划。 The present paper is aimed at presenting its authors' description of the spatial dynamic distribution of heavy metal content in the farmland soils by selecting Nantong, Jiangsu, as the targeted area. In the given research, all the statistical data are processed on a BP Artificial Neural Network Model and problem-solving tasks through GIS technology. The results of our description prove that ANN modeling can not only enable us to grasp intelligently the mapping relationship between spatial position and heavy metal content, but can also help to predict robustly the heavy metals content in every spatial interpolating dot. by using Arcgis analysis. As the result of our study , it is found that there are two kinds of soil heavy metals, Pb and As, are the most serious pollutants in the local farmland soils with others relatively mild; in the whole main region of Nantong district. Tongzhou city and Rudong city, as a matter of fact, prove to belong to lower pollution areas, though some sections, such as the township areas in Nantong, Haimeng and Qidong, heavy metals pollution prove to be very severe. However, the least soil heavy metals content region is located in Rugao town and Haian town. Thus, the description of the spatial dynamic distribution of heavy metal content in the farmland soils proves to be conformed with the actual tested facts perfectly in the regions to be covered. Thus, all the results of our study helps to provide a new thought and model for such heavy metals distribution objectives and serve for crop-planting and growing layout perfectly.
出处 《安全与环境学报》 CAS CSCD 2007年第2期91-95,共5页 Journal of Safety and Environment
基金 江苏省自然科学基金项目(2004019)
关键词 环境工程 BP神经网络模型 GIS技术 土壤重金属 南通市 空间分布 空间插值 environmental engineering BP artificial neural networks modeling GIS technology soil heavy metals Nantong city spatial distribution spatial interpolation
  • 相关文献

参考文献11

  • 1沈掌泉,周斌,孔繁胜,John S.Bailey.应用广义回归神经网络进行土壤空间变异研究[J].土壤学报,2004,41(3):471-475. 被引量:55
  • 2何红艳,郭志华,肖文发.降水空间插值技术的研究进展[J].生态学杂志,2005,24(10):1187-1191. 被引量:147
  • 3夏红霞,周宏,钟珞,魏光琼.基于神经网络的混凝土结构使用寿命评估[J].安全与环境学报,2004,4(1):29-31. 被引量:9
  • 4KRUSKIN.Theory of artifcial neural networks(神经网络理论)[M].YAN Pingfan(阎平凡),trans.Beijing:Tsinghua University Press,2002:30-200.
  • 5YUAN Cengren(袁曾任).Theory of artificial neural networks and its application(人工神经网络及其应用)[M].Beijing:Tsinghua Univeraity Press,2001:50-180.
  • 6ZHANG Chao(张超).Geographical information system(地理信息系统)[M].Beijing:Higher Education Press,1996:20-124.
  • 7CRESSIE N.Statistics for spatial data[M].New York:NYU Press,1999:35-47.
  • 8TheCoordinateGroupforResearchingBackgroundValuesofAgriculturalEnvironment(农业环境背景值协作组).Research of harmful elements remained in farmland soils and crops about 12 provinoes and its districts in our country.农业环境保护,1986,3(2):43-47.
  • 9ZHOU Kali(周开利),KANG Yaohong(康耀红).Modeling and programming for artificial neural networks based on MatLab(神经网络模型及其MatLab仿真程序设计)[M].Beijing:Tsinghua University Press,2005:20-230.
  • 10Mathworks,Inc.Neural network toolbox user's'guide[EB/OL].[2006-03-01]http://www.mathworks.com.

二级参考文献37

  • 1Niu Ditao(牛荻涛).Endurance &amp, Lifettme Predication of Concrete(混凝土结构耐久性与寿命预测)[M].Beijing:Science Press,2003..
  • 2Shaw MR, Zavaleta ES, Chiariello NR, et al. 2002. Grassland responses to global environmental changes suppressed by elevated CO2[J] . Science, 298(5600): 1987~ 1990.
  • 3Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM. 2003. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain):Application to annual precipitation and temperature[J]. Clim. Res., 24(2): 161~ 180.
  • 4Wong KW, Wong PM, Gedeon TD, et al. 2003. Rainfall prediction model using soft computing technique[J]. Soft Comput., 7(6) :434~438.
  • 5Band C. 1991. Forest ecosystem processes at the watershed scale:Basis for distributed simulation [J]. Ecol. Model., 56:171 ~196.
  • 6Burrough PA, McDonnel RA. 1998. Principles of Geographical Information Systems[M]. Oxford :Oxford University Press.
  • 7Daly C, Helmer EH, Quiones M. 2003. Mapping the climate of Puerto Rico, Vieques and Culebra [ J ]. Int. J. Climatol., 23(11):1359~1381.
  • 8Eleanor R, Cross MS, Rick Perrine BS. 1984. Predicting areas endemic for schistosomiasis using weather variables and a landsat data base[J]. Mili. Medi., 149(10):542~545.
  • 9Fedorovski A. 1998. Estimating areal average rainfall for an ungaged motntainous basin in the Amur Basin[J]. J. Environ. Hydrol., 6: 5 ~ 15.
  • 10Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J]. J. Hydrol.,228(1~2): 113~ 129.

共引文献207

同被引文献217

引证文献13

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部