期刊文献+

基2的流水式快速傅里叶变换处理机的形式化模型

A Formal Model of Radix-2 Fast Fourier Transform Processor
下载PDF
导出
摘要 快速傅里叶变换(FFT)的应用领域非常广泛,其硬件实现方法多种多样。传统的电路正确性验证的方法是模拟,这种方法的主要缺点是不能穷尽模拟全部输入情况,而形式化方法使用纯数学手段证明电路具有某些属性,从而证明其正确性。所以用形式化方法验证FFT电路的正确性具有极强的实用价值。形式化验证的第一步工作是对要验证的电路进行建模,因此本文首先介绍了国内外FFT形式化建模的主要方法和优缺点,然后用重写系统给出了任意N=2M点的基2的流水式快速傅里叶变换处理机的形式化模型,显示了重写系统用于复杂硬件电路建模的优越性,为进一步的电路正确性验证奠定基础。 Fast fourier transform (FFT) has a wide range of applications and many various ways of hardware implementations. Simulation is a traditional way for hardware verification, the main weakness of this method is to give all kinds of input that the circuit may have. On the contrast, formal methods can use pure mathematical methods to verify a circuit's properties. That is why exploring new ways to verify the correctness of FFT hardware circuits using formal method is important. Because a formal model should be given in advance of verification, this paper introduces some formal models of FFT. Then it presents a formal model of Radix-2 FFT processor using rewrite systems. It shows that rewrite systems can well specify complex hardware circuits.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期227-232,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60373075)
关键词 重写 形式化 描述 验证 归纳 快速傅里叶变换处理机 rewriting formal method specification verification induction FFT processor
  • 相关文献

参考文献8

  • 1Bjesse Per,Claessen Koen,Sheeran Mary.Lava:Hardware design in haskell[A].Proceedings of the third ACM SIGPLAN International Conference on Functional Programming[C].New York:ACM Press,1998.174-184.
  • 2Per Bjesse.Automatic verification of combinational and pipelined FFT circuits[A].Computer Aided Verification'99[C].New York:Springer Verlag,1999.380-393.
  • 3Mauricio Ayala-Rincon,Rodrigo B N,Carlos H L,et al.Modeling a reconfigurable system for computing the FFT in place via rewriting-logic[A].Proceedings of the SBCCI'03[C].Brazil:IEEE Computer Society Press,2003.205-210.
  • 4Mauricio Ayala-Rincon,Rodrigo B N,Carlos H L,et al.Efficient computation of algebraic operations over dynamically reconfigurable systems specified by rewriting-logic environments[A].Proceedings of the ⅩⅩⅢ International Conference of the Chilean Computer Science Society[C].Washington DC:IEEE Computer Society,2003.60-70.
  • 5Franz Baader,Tobias Nipkow.Term Rewriting and All That[M].British:Cambridge University Press,1998.
  • 6Shousheng He,Mats Torkelson.A new approach to pipeline FFT processor[A],Proceedings of the 10th International Parallel Processing Symposium[C].Washington DC:IEEE Computer Society,1996.766-770.
  • 7张欢欢,邵志清,宋国新.基于重写归纳技术的串行加法器的描述和验证[J].华东理工大学学报(自然科学版),2003,29(1):59-63. 被引量:3
  • 8张欢欢,邵志清,宋国新.基于幂表的并行加法器的归纳验证[J].电子学报,2003,31(6):932-936. 被引量:3

二级参考文献14

  • 1Misra J. Powerlist: A structure for parallel recursion [A]. A Classical Mind: Essays in Honor of C. A. R. Hoare [ C ]. Hertfordshire: Prentice Hall, 1994.295 - 316.
  • 2Burch J R, et al, Sequential circuit verification using symbolic model checking [ A], Proc of 27th ACM/IEEE Design Automation Conference[C]. New York: ACM Press, 1990,46 - 51.
  • 3Bryant R E. Graph - based algorithms for boolean function manipulation[J]. IEEE Transactions on Computer Science, 1986, C-35 ( 8 ) : 677 -691.
  • 4Hunt W A, Brock B C. The verification of a bit-slice ALU [ A]. Workshop on Hardware Specification, Verificatian and Synthesis: Mathematical Aspects [ C]. New York : Springer-Verlag, 1989. 282 - 306.
  • 5Hunt W A, FM8051 : A verified microprocessor [ D]. Austin : University of Texas at Austin, 1985.
  • 6Camilleri A J, Gordon M J, Malham T F. Hardware verification using higher-order logic [A]. HDL Descriptions to Guaranteed Correct Curcuit Designs [ C ]. Amsterdam: Noah-Holland Publishing Company,1987.43 - 67.
  • 7Dershowitz N, Jouannaud J-P. Rewrite systems [ A]. Handbook of Theoretical Computer Science, Vol. B [ M]. Amsterdam: North-Holland Publishing Company, 1990.244 - 319.
  • 8McCarthy J. A basis for a mathematical computation [ A]. Computer Programming and Formal Systems [C]. Amsterdam: Noth-Holland Publishing Company, 1963.33 - 70.
  • 9Burstall R.Proving properties of programs by structural induction [J].Computer Journal, 1969,12( 1 ) :41 - 48.
  • 10Shao Zhiqing, et al. Proving inductive theorems using witnessed test sets[A]. Proc of 2nd Conf on Formal Engineering Methods [C]. Las Alamitors: IEEE Computer Society Press, 1998.158 - 164.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部