摘要
对高阶发展方程给出了两类带参数α的三层显式差分格式,其截断误差均为O(τ+h).稳定性分析指出:当k为偶数时,它们无条件不稳定;当k为奇数时,稳定条件为|R|≤f(k,α)是α(0≤α≤10)的上升函数,但为k的下降函数.例如,当k=1时,f(1,3)=0.987123,f(1,10)=2.150690;当k=3时,f(3,3)=0.109153,f(3,10)=0.319036;当k≤9(奇数)时,它们较大地改进了同类格式的稳定性条件|R|≤1/22k.
Two classes of three-level explicit difference schemes with parameter a and the same truncation error O(r+h),are given here for the evolution equations of high-order As shown by stabilityanalysis, while k is an even number, they are unconditionally unstable; while k is an odd number, they havethe stability condition |R|≤f(k,α) which is the increasing function of α(0≤α≤10) and the decreasing function of k.They are richly exemplified.
出处
《华侨大学学报(自然科学版)》
CAS
1996年第3期231-235,共5页
Journal of Huaqiao University(Natural Science)
基金
福建省自然科学基金
关键词
发展方程
显式差分格式
稳定性分析
evolution equation of high-order,explicit difference scheme,stability analysis