期刊文献+

基于经验模态分解和BP神经网络的油气两相流流型辨识 被引量:4

Flow pattern identification of oil-gas two-phase flow based on empirical mode decomposition and BP neural network
下载PDF
导出
摘要 基于经验模态分解(empirical mode decomposition,EMD)和BP神经网络,提出了油气两相流流型辨识的新方法。应用EMD将差压信号分解成不同频率尺度上的单组分之和,并提取组分的归一化能量作为流型辨识特征量。BP神经网络以这些能量特征量为输入对油气两相流不同流型(包括泡状流、塞状流、层状流、弹状流和环状流)进行分类。实验结果表明,本文提出的流型辨识方法是有效的,其中泡状流、塞状流、层状流、弹状流和环状流的辨识精度分别为100%、89.4%、93.3%、96.3%和96.9%。 Based on empirical mode decomposition (EMD) and back propagation (BP) neural network, a new method is proposed to identify flow pattern of oil-gas two-phase flow. EMD is applied to the differential pressure signal of two-phase flow to obtain frequency components with different scales, and the normalized energy of the component is extracted as the feature of flow pattern identification. With these energy features as inputs, five flow patterns such as bubble flow, plug flow, stratified flow, slug flow and annular flow are identified using BP neural network. The experimental results indicate that the proposed BP-based method is effective for the identification of flow patterns ; and the identification rates are 100% , 89.4% , 93.3% , 96.3% , and 96.9% for bubble flow, plug flow, stratified flow, slug flow and annular flow respectively.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第4期609-613,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(50576084)资助项目
关键词 经验模态分解 BP神经网络 油气两相流 流型 差压信号 empirical mode decomposition (EMD) BP neural network oil-gas two-phase flow flow pattern differential pressure signal
  • 相关文献

参考文献8

  • 1WU H J,ZHOU F D,WU Y Y.Intelligent identification system of flow regime of oil-gas-water multiphase flow[J].International Journal of Multiphase Flow,2001,27:459-475.
  • 2KESKA J K,SMITH M D,WILLIAMS B E.Comparison study of a cluster of four dynamic flow pattern discrimination techniques for multi-phase flow[J].Flow Measurement and Instrumentation,1999,10:65-77.
  • 3HUANG N E,SHEN Z,LONG S,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.R.Soc.Lond.A,1998,454:903-995
  • 4HUANG N E,SHEN Z,LONG S.A new view of nonlinear water waves:The Hilbert spectrum[J].Annu.Rev.Fluid Mech.1999,31:417-457.
  • 5DATIG M,SCHLURMANN T.Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves[J].Ocean Engineering,2004,31:1783-1834.
  • 6程军圣,于德介,杨宇,邓乾旺,陈源.基于EMD的齿轮故障识别研究[J].电子与信息学报,2004,26(5):825-829. 被引量:17
  • 7HORNIK K,STINCHCOMBE M,WHITE H.Multilayer feed-forward networks are universal approximators[J].Neural Networks,1989,12(5):359-366.
  • 8FUNAHASHI K I.On the approximate realization of continuous mappings by neural networks[J].Neural Networks,1989,12(3):183-1992.

二级参考文献8

  • 1王延春,谢明,丁康.包络分析方法及其在齿轮故障振动诊断中的应用[J].重庆大学学报(自然科学版),1995,18(1):87-91. 被引量:25
  • 2Huang N E, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 1998, 454: 903-995.
  • 3Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: The Hilbert spectrum.Annu. Rev. Fluid Mech., 1999, 31: 417-457.
  • 4Vincent H T, Hu S -L J, Hou Z. Damage detection using empirical mode decomposition method and a comparison with wavelet analysis. Proceedings of the Second International Workshop on Structural Health Monitoring, Stanford, 1999: 891-900.
  • 5Randall R B. A new method of modeling gear faults. J. of Mechanical Design, Trans. of ASME,1982, 104(2): 259-267.
  • 6Ma J, Li C J. Gear defect detection through model-based wideband demodulation of vibrations.Mechanical System and Signal Process, 1996, 10(5): 653-665.
  • 7朱利民,严峻,朱向阳,钟秉林.振动调幅信号广义检波滤波解调法及其在齿轮故障诊断中的应用[J].东南大学学报(自然科学版),1998,28(2):101-104. 被引量:9
  • 8何岭松,李巍华.用Morlet小波进行包络检波分析[J].振动工程学报,2002,15(1):119-122. 被引量:55

共引文献16

同被引文献34

  • 1田玉冬,邹海荣.基于人工神经网络的电涡流传感器非线性辨识[J].仪器仪表学报,2006,27(z1):836-838. 被引量:6
  • 2王梅,石红瑞.基于强酸当量的pH自适应内模控制[J].化工自动化及仪表,2005,32(6):26-28. 被引量:3
  • 3边树涛,董艳蕾,郑浚茂.地震波频谱衰减检测天然气技术应用研究[J].石油地球物理勘探,2007,42(3):296-300. 被引量:46
  • 4HUAGN N E, SHEN ZH, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proc. R. Soc. Lond. , 1998, A: 903-995
  • 5SHIN K, HAMMOND J K, WHITE P R. herative SVD method for noise reduction of low-dimension chaotic time series [ J ]. Mechanical Systems and Signal Processing, 1999, 13(1) : 115-124.
  • 6AUGER F, FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method [ J ]. IEEE Transactions on Signal Processing, 1995, 43: 1068-1089.
  • 7WILLIAMS W, BROWN M, HERO A. Uncertainty, information and time-frequency distributions[ J]. SPIE Advanced Signal Processing Algorithms, Architectures and Implementations II, 1991,1566 : 144-156.
  • 8胡爱军,安连锁,唐贵基.转子碰摩故障振动时频特征的实验研究[J].动力工程,2007,27(4):482-486. 被引量:15
  • 9周开利,康耀红.神经网络及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
  • 10McAvoy T J, Hsu E, Lowenthal S. Dynamics of pH in Controlled Stirred Tank reactor[J]. Ind Eng Chem Process Des, 1972,11 (1): 68-70.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部