期刊文献+

基于非局部模型的混凝土损伤的数值模拟 被引量:3

Numerical simulation of concrete material based on the non-local damage model
下载PDF
导出
摘要 分析了局部损伤模型在进行混凝土应变软化模拟时存在的问题:网络依赖性和零能量损耗问题;在传统的非局部损伤模型中引入光滑的权函数,构造一种新的非局部损伤模型。计算表明该非局部损伤模型可较好避免有限元在应变软化模拟时的网络依赖性,预测出的荷载-位移反应与实际情况吻合较好。 The two problems associated with strain softening of concerte material,zero consumption of energy and mesh dependence, are studied. The smooth weight function is introduced to substitute for the piecewise uniform weighting which has been implicitly assumed in the classical non-local model. The results of an example indicate that the non-local model in which the B-spline weight function is introduced can overcome mesh dependence when the strain softening phenomenon of concrete material is simulated. The predicted load-displacement response agrees well with the experiment result.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期472-474,共3页 Journal of Hefei University of Technology:Natural Science
关键词 应变软化 网络依赖性 非局部损伤模型 权函数 strain softening mesh dependence non-local damage model weight function
  • 相关文献

参考文献11

  • 1黄古智,徐秉业.固体力学发展趋势[M].北京:北京理工大学出版社,1995.
  • 2loland K E.Continuous damage model for load-respones estimation of concrete[J].Cement and Concrete Research,1980,(10):395-402.
  • 3余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985,(2):14-16.
  • 4钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报(自然科学版),1989,17(3):40-47. 被引量:58
  • 5Kroner E.Elasticity theory of material with long range cohesive forces[J].Int J Solids Struct.,1967,3:732-742.
  • 6Eringen A C.Nonlocal polar elastic continua[J].Int.J Solids Struct.,1972,10:223-248.
  • 7Belytschko T.Strain-softening materials and finite-element solutions[J].Int J Solids Struct,1986,23:163-180.
  • 8赵启林,孙宝俊,江克斌.非局部损伤模型的客观性研究[J].工程力学,2003,20(5):185-189. 被引量:4
  • 9Hall F R,Hayhurst D R.Modelling of grain size effects in creep crack growth using a non-local continuum damage approach[J].Proc Royal Soc London,1991,433:405-421.
  • 10Fulk D A,Quinn D W.An analysis of 1-D smoothed particle hydrodynamics kernels[J].Comput Phs,1996,126:165-180.

二级参考文献23

  • 1Baant Z P,Planas J. Fracture and size effect in concrete and other quasi-brittle materials [M]. Boca Raton: CRC Press,1998.
  • 2Eringen A C. Nonlocal polar elastic continua[J]. Int J Solids Struct, 1972, (10): 233- 248.
  • 3Belytschko T. Strain-softening materials and finite-element solutions [J]. Int J Solids Struct, 1986,23:163- 180.
  • 4Hall F R,Hayhurst D R. Modelling of grain size effects in creep crack growth using a nonlocal continuum damage approach[J]. Proc Royal Soc London,1991,433:405-421.
  • 5Pijaudier-Cabot G, Baant Z P. Nonlocal damage theory [J]. Eng Mech,1987,113:1 512-1 533.
  • 6Capuzzo-Dolcetta R,Lisio R D. A criterion for the choice of the interpolation kernel in smoothed particle hydrodynamics [J]. Applied Numerical Mathematics, 2000,34: 363- 371.
  • 7Fulk D A,Quinn D W. An analysis of 1-D smoothed particle hydrodynamics kernels [J]. Comput Phs, 1996,126:165-180.
  • 8Peerlings R H J,de Borst R, Brekelmans W A M, et al.Gradient-enhanced damage modeling of concrete fracture [J]. Mech Cohesive-Frictional Mat, 1998, (3): 323- 342.
  • 9Bazant Z P and Feng-Bao Lin. Non-local smeared cracking model for concrete fracture[J]. Journal of Engineering Mechanics1988,114:2493-2511.
  • 10Lena Stromberg and Matti Ristinmaa. FE-formulation of a non-local plasticity theory[J]. Computer Method in Applied Mechanics and Engineering, 1996,136:127-144.

共引文献67

同被引文献47

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部