期刊文献+

基于相空间重构理论与递归神经网络相结合的股票短期预测方法 被引量:5

New Approach of Short-term Stock Prediction Based on Combination of Phase Space Reconstruction Theory and Recurrent Neural Network
下载PDF
导出
摘要 根据股票指数时间序列复杂的非线性特性,提出以相空间重构理论与递归神经网络相结合的股票短期预测新方法。以相空间重构理论确定最佳延迟时间和最小嵌入维数,以最佳延迟时间为间隔的最小嵌入维数作为递归神经网络的输入维数,并按预测相点步进递归的生成训练数据进行短期预测,提高了预测精度和稳定性。该方法应用于沪市股票综合指数预测,其结果与传统的单纯用BP网络模型预测的结果相比较,精度大大提高,证明了该预测模型和方法在实际时间序列预测领域的有效性和实用性。 A new approach of short-term stock prediction using PSRT (Phase Space Reconstruction Theory) combined with RNN ( Recurrent Neural Network) was presented according to the complex nonlinear character of stock time series. The optimal delay time and minimal embedding dimension were determined by PSRT and the input dimension of RNN was decided by minimal embedding dimension. The training samples were generated by means of the stepping recursive phase points,which could improve precision and stability of prediction. The new method was applied to shot-term forecasting of Shanghai stock index. Compared to the traditional standard BP neural network, the results showed higher precision. So this research acquires effective progress in the practical prediction of time series.
出处 《计算机应用研究》 CSCD 北大核心 2007年第4期239-241,245,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(30230350) 广东省科技攻关项目(2005-B10101033)
关键词 股票短期预测 时间序列 相空间 神经网络 short-term stock prediction time series phase space neural network
  • 相关文献

参考文献10

  • 1周洪涛,王宗军.基于混沌理论的上海股市非线性动力学研究[J].系统工程理论方法应用,2005,14(5):390-394. 被引量:4
  • 2JOHNSON M A. The random walk and beyond : an inside guide to the stock market[ M]. New York: John Wiley & Sons. 1988.
  • 3BOX G E P, JENKINS G M. Time series analysis: forecasting and control[ M]. San Francisco: Holden-Day, 1990.
  • 4陈可,张琴舜,陈培培,蔡日基.BP神经网络在证券分析预测中应用[J].计算机工程,2001,27(11):95-97. 被引量:20
  • 5TAKENS F. Detecting strange attractors :in turbulence [ J]. Lecture Notes in Math, 1981,898( 1 ) :366-381.
  • 6ROSENSTEIN M T, COLLINS J J , DE LUCA C J. Reconstruction expansion as a geometry-based framework for choosing proper delay times[J]. Journal of Physica D, 1994,73(1-2) :82-98.
  • 7FRASER A M, SWINNEY H L. Independent coordinates for strange attractors from mutual information[ J]. Physical Review A, 1986,33(2) : 1134-1140.
  • 8KENNEL MB, BROWN R, ABARBANEL HD I. Determing embedding dimension for phase-space reconstruction using a geometrical constrution[ J]. Phyical Review A, 1992,45 (6) :3403-3411.
  • 9韩文秀,郁俊莉,王其文.我国资本市场混沌特性研究[J].系统工程理论与实践,2002,22(10):43-48. 被引量:13
  • 10HAGAN M T, DEMUTH D B, BEALE M H. Neural Network Design[ M]. Boston: PWS Publishing, 1996.

二级参考文献26

  • 1李京文,罗春龙,张昕竹,张近.混沌理论与经济学[J].数量经济技术经济研究,1991,8(2):19-26. 被引量:14
  • 2朱新坚,邵惠鹤,张钟俊.略论浑沌理论与非线性经济学[J].系统工程理论方法应用,1994,3(3):1-5. 被引量:9
  • 3盛骤 谢式千.概率论与数理统计[M].北京:高等教育出版社,1989.189-194.
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1991.12-14.
  • 5卢根鑫,证券经济分析,1994年
  • 6Tan Charence N W Tan,Proc first New Zealand Int Twostream Conference on Artificial Neural Network,1993年,288页
  • 7焦李成,神经网络系统理论,1991年
  • 8盛骤,概率论与数理统计,1989年
  • 9Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physkca D, 1997, 110:43-50.
  • 10Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physics D, 1983, 9:189-208.

共引文献33

同被引文献50

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部