期刊文献+

数字趋势序列及其全序列匹配算法研究

Research on Number Trend Sequences and Whole Sequence Matching Algorithm
下载PDF
导出
摘要 针对基于点距离的时序数据分析和传统趋势序列分析的缺点,提出了数字趋势序列、序列的Lp距离、序列分段向量等概念,证明了包括“序列分段均值定理”在内的3个重要定理,设计了专门用于数字趋势序列的“基于序列分段向量(SSV)的全序列匹配算法”。算法使用片段斜率所对应的弧度值来度量片段的趋势,同时用趋势的保持时间来对趋势值进行加权,实现了数字趋势序列之间快速的全序列相似性搜索。 To overcome the demerits of point-distance-based temporal data analysis and traditional trend sequence analysis, the concepts of number trend sequence, Lp distance of sequences and sequence segmented vector (SSV) are put forward, and three theorems including sequence segmented mean theorem are proved. SSV-based whole sequence matching algorithm is designed to solve the whole match problem of number trend sequences. The algorithm uses radlans to measttre the trend, takes advantage of time of the trend maintenance to weight the value of trend, and realizes quick whole sequence similarity search of number trend sequences.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第8期10-13,共4页 Computer Engineering
基金 国家自然科学基金资助项目(70371007)
关键词 全序列匹配 数字趋势序列 序列分段向量 Whole sequence matching Number trend sequence Sequence segmented vector
  • 相关文献

参考文献5

  • 1John F R, Myra S. A Survey of Temporal Knowledge Discovery Paradigms and Methods[J]. IEEE Transaction on Knowledge and Data Engineering, 2002, 14(4): 750-767.
  • 2Faloutsos C, Ranganathant M, Manolopoulos Y. Fast Subsequence Matching in Time Series Databases[C]. Proc. of SIGMOD'94. 1994.
  • 3Perng C, Wang H, Zhang S. Landmarks: a New Model for Similarity-based Pattern Querying in Time Series Databases[C]//Proc.of IEEE Conf. on Data Engineering. 2000: 33-44.
  • 4Yoon P J, Lee J, Kim S. Trend Similarity and Prediction in Time Series Databases[C]//Proceedings of SPIE'03. 2003:201-212.
  • 5Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching[C]//Proceedings of ACM SIGMOD. 1984: 47-57.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部