期刊文献+

基于密度的微粒群优化混合聚类算法 被引量:1

Hybridization Clustering Algorithm of Particle Swarm Optimization Based on Density
下载PDF
导出
摘要 在分析了现有的基于密度的聚类算法的基础上,结合微粒群算法,提出了一种基于密度的微粒群混合聚类算法。相对于DENCLUE聚类算法,该算法能够对使用的资源进行有效的控制,有利于实现对数据库数据的增量处理。实验证明了算法的有效性。 A hybridization of the PSO with density-based clustering algorithm is presented in the paper. The algorithm is suitable to process the incremental data compared to the DENCLUE. Besides, the resource used in the algorithm is limited. Several experiments are performed to test the algorithm. The results indicate the efficiency of the algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第8期170-172,共3页 Computer Engineering
基金 国家自然科学基金资助项目(70272050)
关键词 聚类 微粒群优化 密度聚类 Clustering Particle swarm optimization (PSO) Density-based clustering
  • 相关文献

参考文献6

  • 1HANJ KAMBERM 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of the IEEE International Conference on Neural Networks. 1995.
  • 3Ester M, Kriegel H P, Sander J. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proc. of the 2^nd International Conference on Knowledge Discovering in Databases and Data Mining. 1996-08.
  • 4Ankerst M, Breunig M, Kriegel H, et al. OPTICS: Ordering Points to Identify the Clustering Structure[C]//Proc. of ACM Sigmod Int. Conf. on Management of Data. 1999: 49-60.
  • 5Hinneburg A, Keim D A. An Efficient Approach to Clustering in Large Multimedia Databases with Noise[C]//Proc. of Int. Conf.on Knowledge Discovery and Data Mining. 1998: 58-65.
  • 6Shen Hongyuan, Peng Xiaoqi, Wang Junnian. et al. A MountainClustering Based on Improved PSO Algorithm[C]//Proc. of Int. Conf. on Parallel Processing in Neural Systems and Computers.2005: 477-481.

共引文献44

同被引文献2

  • 1Aggarwal C.A Framework for Clustering Evolving Data Streams[C]//Proc.of the 29th Int'l Conf.on Very Large Data Bases.San Francisco,USA:[s.n.],2003.
  • 2Aggarwal C.A Framework for projected Clustering of High Dimensional Data Streams[C]//Proc.of the 30th Int'l Conf.on Very Large Data Bases.San Francisco,USA:[s.n.],2004.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部