期刊文献+

地心惯性坐标系到质心轨道坐标系的坐标转换方法 被引量:25

Coordinate Transformation Methods from the Inertial System to the Centroid Orbit System
下载PDF
导出
摘要 卫星编队飞行通常需要高精度的星间基线测量信息,而坐标转换是影响基线确定精度的一个重要环节。以分布式InSAR为例,着重研究了从地心惯性坐标系到卫星质心轨道坐标系的转换方法,详细地推导了具体的转换公式。仿真实验表明:在相同的测量条件下,直接方法的转换精度优于间接方法。并且就目前的测量条件而言,卫星的绝对速度测量是影响直接方法转换精度的主要因素。 Satellite formation flying usually needs the high-precision measurement information of inter-satellite baselines, and the coordinate transformation is one of important steps which influence the determination precision of baseline. Taking the distributed InSAR as an example, this paper lays a strong emphasis on the research of the coordinate transformation methods from the inertial coordinate system to the centroid orbit coordinate system, and deduces the idiographic formulas of them in detail. The results of simulation show that the transformation precision of the direct method is better than the indirect method in the same measure conditions, and the main factor of affecting the transformation precision of the direct method is the absolute velocity measurement in terms of the current conditions of measurement.
出处 《航天控制》 CSCD 北大核心 2007年第2期4-8,共5页 Aerospace Control
基金 全国优秀博士论文基金(No.200140)资助
关键词 卫星编队飞行 坐标转换 惯性坐标系 质心轨道坐标系 Satellite formation flying Coordinate transformation Inertial coordinate system Centroid orbit coordinate system
  • 相关文献

参考文献6

  • 1Enright J P,Miller D W, Sedwick R. Information Architecture Analysis and Optimization for Space-based Distributed Radar[ R ]. USA : AIAA, A9942104,1999.
  • 2Massonnet D. Capabilities,Limitation of the Interferometric Cartwheel[ J]. IEEE Transaction on Geoscience and Remote Sensing, 2001,39 ( 3 ) : 506 - 520.
  • 3周荫清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展[J].电子学报,2003,31(z1):1939-1944. 被引量:26
  • 4Flechtner F. Relative Baseline Determination for a Tandem SAR Mission Using GPS Code and Phase Measurements [ R ]. GFZ ( Geo Forschungs-Zentrum Potsdam ),Technical Note, 2003.
  • 5刘齐军.InSAR高程测量机理和高程数据与遥感图像的匹配技术研究[D].长沙:国防科技大学,2004.
  • 6李真芳,黄源宝,保铮,廖桂生.利用分布式InSAR进行地形高程测量性能分析[J].系统工程与电子技术,2003,25(6):697-700. 被引量:6

二级参考文献41

  • 1[1]Luu K M, Martin M, et al. University nanosatellite distributed satellite capabilities to support TechSat 21 [A]. AIAA/USU Small Satellite Conference Logan UT[C]. USA: SC99-Ⅲ-3,1999.
  • 2[2]Sedwick R J, Kong E M C, Miller D W. Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems: applications to techsat 21 [ R ]. USA: AIAA, A9845988,1998.
  • 3[3]Skinner J M, Tollefson M V, Rosenstock J C. Cooperative intelligent agents for distributed satellite systems [ R]. USA: AIAA, A9845918,1998.
  • 4[4]Das A, Cobb R. TechSat 21-Space missions using collaborating constellations of satellites[A]. 12th AIAA/USU Conference on Small Satellites[ C]. USA: SSC98-Ⅵ-1,1998.
  • 5[5]Zetocha P. Satellite cluster command and control[ A]. IEEE Aerospace conference proceedings[ C]. Big Sky, MT: IEEE, 2000.49 - 54.
  • 6[6]Zetocha P A, Brito M. Development of a testbed for distributed satellite command and control [ A ]. IEEE Aerospace Conference Proceedings[C]. Big Sky, MT: IEEE, 2001.2-609-2-614.
  • 7[7]Burns R, McLaughlin C A, et al. TechSat 21 :Formation design, control and simulation [ A ]. IEEE Aerospace Conference Proceedings [ C ]. Big Sky, MT: IEEE, 2000.19 - 25.
  • 8[8]Enright J P, Miller D W R, Sedwick J. Information architecture analysis and optimization for space-based distributed radar[ R]. USA: AIAA,A9942104,1999.
  • 9[9]Sedwick R J, Hacker T L, Marais K. Performance analysis for an interferometric space-based GMTI radar system[ A ]. IEEE National Radar Conference-Proceedings[ C ]. Alexandria, VA, USA: IEEE, 2000.689 -694.
  • 10[10]Massonnet D. Capabilities, limitations of the interferometric cartwheel[J] .IEEE Transactions on Geoscience and Remote Sensing, 2001,39(3) :506 - 520.

共引文献31

同被引文献171

引证文献25

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部