期刊文献+

基于紫外敏感器的卫星自主导航方法研究 被引量:5

Satellite Autonomous Navigation Based on Ultraviolet Sensors
下载PDF
导出
摘要 研究了卫星利用CCD紫外敏感器进行自主轨道确定的方法。敏感器通过地球紫外图像提供地心方向矢量及姿态误差信息进而确定卫星轨道。采用Unscented卡尔曼滤波算法,对紫外敏感器测量精度、姿态误差、部分轨道参数以及地球模型对导航精度的影响进行了仿真验证。仿真结果表明本方法具有较高的定轨精度,其导航误差主要取决于紫外敏感器测量精度和卫星姿态误差。 An autonomous orbit determination method using the CCD ultraviolet sensors is studied. The sensors provide the direction vector information of pointing to the earth center and attitude measurement error from the earth ultraviolet image. Simulation is taken using the unscented Kalman filter to validate the effect of the ultraviolet sensor measurement precision, attitude error, certain orbit parameters and the model of earth shape on navigation precision. The results indicate that this method has high precision for orbit determination, and the navigation error is mainly dominated by the measurement precision of ultraviolet sensor and attitude measurement error.
出处 《航天控制》 CSCD 北大核心 2007年第2期47-51,72,共6页 Aerospace Control
关键词 自主导航 紫外敏感器 UKF滤波 卫星轨道 Autonomous navigation Ultraviolet sensor UKF filter Satellite orbit
  • 相关文献

参考文献6

二级参考文献85

  • 1蔡伟,于松柏.紫外姿态敏感器[J].控制工程(北京),2001(5):79-90. 被引量:3
  • 2[1]Huffman, Robert E. Recent advances in atmospheric ultra violet remote sensing [J]. SPIE,1994, 2282: 138- 144.
  • 3[2]Middleton, Elizabeth M, Herman, et al. Trends in ultraviolet at the earth's land surfaces determined from two decades of satellite- based Total Ozone Mapping Spectrometer (TOMS) observations [J]. IEEE Geoscience and RemoteSeraing Society, 1999,2296 - 2299.
  • 4[3]Ferguson, Donald H. Next- generation ultraviolet astrono my with the deep - ultraviolet explorer observatory [J].SPIE, 1992, 1697: 274-279.
  • 5[4]SUZUKI M, SHIBASAKI K, SANO T, et al. Overview ofGCOM- AI/ODUS program [J]. SPIE, 2001, 4150:148- 159.
  • 6[5]SHULL J M. Large space ultraviolet olservatory SI - 2010: Initialplans for a new UV/O mission [J]. SPIE, 1999,3764:170 - 179.
  • 7Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 8Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 9Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 10Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.

共引文献253

同被引文献24

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部