期刊文献+

基于核的最近邻特征重心分类器及人脸识别应用 被引量:2

Kernel-based nearest neighbor feature centroid classifiers for face recognition
下载PDF
导出
摘要 本文提出核最近特征线和特征面分类器,可直接对高维人脸图像进行识别。为解决计算量大和可能失效的问题,提出(核)最近特征重心和(核)最近邻特征两种解决方法,前者降低了计算特征线和面距离的复杂度,后者减少了特征线和面的数目,两种方法均避免了可能失效的问题。将二者结合得到的(核)最近邻特征重心分类器,在获得相近识别率的条件下,使计算复杂度降到了最小。所得方法无需预先抽取人脸图像特征,因此避免了在较多样本数时,特征抽取存在计算量大的问题。基于ORL人脸数据库的实验验证了本文方法的有效性。 The kernel-based nearest feature line and plane classifiers are proposed in this paper. To overcome the problems of large computational cost and possible failure, the (kernel) nearest feature centroid and (kernel) nearest neighbor feature classifiers are presented. The former reduces the cost in computing feature line and plane distance, and the later reduces the number of feature line and plane. Both methods avoid the possible failure. The (kernel) nearest neighbor feature centroid classifiers are proposed to further reduce the computational cost. The proposed methods need not extract the facial features, which therefore can directly classify original face images. Experimental results on ORL face database demonstrate the feasibility of the proposed methods.
出处 《电路与系统学报》 CSCD 北大核心 2007年第2期5-10,共6页 Journal of Circuits and Systems
基金 南京信息工程大学科研基金资助项目
关键词 人脸识别 最近邻特征重心 分类器 核方法 face recognition nearest neighbor feature centroid classifier kernel method
  • 相关文献

参考文献7

  • 1Li S Z,Lu J.Face recognition using nearest feature line method[J].IEEE Trans.NN,1999,10(2):439-443.
  • 2Li S.Z.Content-Based Audio Classification and Retrieval Using the Nearest Feature Line Method[J].IEEE Trans.Speech and Audio Processing,2000,8(5):619-625.
  • 3Li S.Z.Performance evaluation of the nearest feature line method in image classification and retrieval[J].IEEE Trans.PAMI,2000,22(11):1335-1339.
  • 4Chien J T,Wu C C.Discriminant waveletfaces and nearest feature classifiers for face recognition[J].IEEE Trans.PAMI,2002,24(12):1644-1649.
  • 5Zheng W M,Zhao L,Zou C R.Locally nearest neighbor classifiers for pattern recognition[J].Pattern Recognition,2004,37:13071309.
  • 6Muller K R,Mika S,Ratsch G.An introduction to kernel-based learning algorithms[J].IEEE Trans.NN,2001,12(2):181-201.
  • 7程云鹏.矩阵论[M].西安:西北工业大学出版社,2001..

共引文献43

同被引文献22

  • 1ChenC Y, Chang C C, Lee R C T. A near patternmatching scheme based upon principal component analysis[J]. Pattern Recognition Letters, 1995, 16(4): 339-345.
  • 2Fukunaga K. Introduction to statistical pattern recognition[M]. 2nd ed. San Diego: Academic Press, 1990.
  • 3Mitani Y, Hamamoto Y. A local mean-based nonparametric classifier[ J ]. Pattern Recognition Letters, 2006, 27(10): 1151-1159.
  • 4Duda R O, Hart P E, Stork D G. Pattern classification [M]. 2nd ed. New York: John Wiley Sons, 2001.
  • 5Jain A K, Ramaswami M D. Classifier design with Parzen windows[z]. Amsterdam: Elsevier, 1988.
  • 6Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation [z]. Cambridge: MIT Press, 1986.
  • 7Ness J V. On the dominance of nonparametric Bayes rule diseriminant algorithms in high dimensions [J]. Pattern Recognition, 1980, 12 (3):355-368.
  • 8Cover T M, Hart P E. Nearest neighbor pattern elassification[J]. IEEE Trans on Information Theory, 1967, 13(1): 21-27.
  • 9胡燕,吴虎子,钟珞.基于改进的kNN算法的中文网页自动分类方法研究[J].武汉大学学报(工学版),2007,40(4):141-144. 被引量:20
  • 10李斌,李义兵,何红波.基于LZ复杂性相似度的垃圾邮件识别[J].计算机工程与应用,2007,43(29):176-178. 被引量:3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部