期刊文献+

Cu-20%Co合金雾化液滴的凝固组织特征

SOLIDIFICATION MICROSTRUCTURE OF THE GAS-ATOMIZED DROP OF Cu-20%Co ALLOY
下载PDF
导出
摘要 对Cu-20%Co合金进行了高压气体雾化快速凝固实验,获得了富Co相以微细球形粒子形式分布于基体的Cu- 20%Co合金粉末.富Co相粒子的尺寸随着粉末尺寸的增加而增大.在凝固过程中,富Co相液滴受固-液界面推斥;凝固后, Co相粒子主要分布于晶界.由于富Co液相的表面能较高,液-液相变时弥散相液核通常在雾化液滴内部形成,并在温度梯度的作用下向雾化液滴中心迁移,从而导致在粉末表面形成很薄的富Cu基体相层. Rapid solidification experiments have been carried out with Cu-20%Co alloy under the high-pressure gas atomization conditions. Powders containing fine dispersions of Co-rich particles were obtained. The average radius of the Co-rich particles increases with the size of powders. The Co-rich droplets are repulsed by the solid/liquid interface during solidification and Co-rich particles distribute, therefore, mainly along the grain boundaries. Because the surface energy of the Co-rich liquid is relatively higher, the Co-rich droplets nucleate inside the atomized drop. After nucleation the Co-rich droplets move towards the center of the atomized drop under the effect of the temperature gradient. The droplets motion causes the formation of the Co-poor layer on the surface of the powder.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2007年第4期385-387,共3页 Acta Metallurgica Sinica
基金 国家自然科学基金项目50371092和50671111 国家自然科学基金国际合作重大项目50620130095 辽宁省自然科学基金项目20050047资助
关键词 Cu-20%Co合金 雾化 快速凝固 组织 Cu-20%Co alloy, gas atomization, rapid solidification, microstructure
  • 相关文献

参考文献14

  • 1Elder S P, Munitz A, Abbaschian G J. Mater Sci Forum,1989; 50:137
  • 2Wilde G, Perepezko H J. Acta Mater,1999; 47:3009
  • 3Cao C D, Gorier G P, Herlach D M, Wei B. Mater Sci Eng, 2002; A325:503
  • 4Munitz A, Elder S P, Abbaschian G J. Metall Trans, 1992;23A: 1817
  • 5Munitz A, Abbaschian G J. Metall Mater Trans, 1996;27A: 4049
  • 6Munitz A, Abbaschian G J. J Mater Sci, 1998; 33:3639
  • 7Yamauchi I, Ueno N, Shlmaoka M, Ohnaka I. J Mater Sci,1998; 33:371
  • 8Busch R, Gartner F, Botchers C, Haasen P, Bormann R.Acta Metall Mater, 1995; 43:3467
  • 9Li D, Robinson M B, Ra.thz T J, Williams G. Mater Lett,1998; 36:152
  • 10Asthana R, Tewari S N. J Mater Sci, 1993; 28:5414

二级参考文献7

  • 1Becker R. Die keimbildung bei der ausscheidung in metallischen mischkristallen[J]. Annalen der Physik, 1938,32:128.
  • 2SGTE Alloy Solution Database. Scientific Group Thermodata Europe, 1992.
  • 3Nishizawa T, Hao S M, Hasebe M, et al. Thermodynamic analysis of miscibility gap due to ordering in ternary systems [J]. Acta Metall, 1983, 31:1403.
  • 4Chuang Y Y, Schmid R, Chang Y A. Thermodynamic analysis of the iron-copper system I: the stable and metastable phase equilibra [J]. Metall Trans, 1984,15A: 1921.
  • 5Wilde G, Perepezko J H. Critical-point wetting at the metastable chemical bimodal in undercooled Fe-Cu alloys [J]. Acta Mater, 1999, 47(10): 3009.
  • 6Hasebe, Nashizawa Y. Calculation of phase diagrams of the iron-copper and cobalt-copper systems [J]. CALPHAD, 1980, 4(2): 83.
  • 7Nishizawa T, Ohnuma I, Ishida K. Correlation between interfaeial energy and phase diagram in ceramic-metal system [J]. J Phare Equilibria, 2001, 3:269.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部