期刊文献+

LC4CS铝合金的超高周疲劳寿命分布 被引量:2

GIGACYCLE FATIGUE LIFE DISTRIBUTION OF ALUMINUM ALLOY LC4CS
下载PDF
导出
摘要 采用超声高频疲劳试验机进行了LC4CS铝合金实验样本容量为66的超高周疲劳寿命实验.结果表明,超高周疲劳寿命具有双峰分布特征,这一特征与疲劳裂纹的萌生点有关:较短疲劳寿命的样品的裂纹萌生于夹杂等缺陷处,而较长疲劳寿命的样品的裂纹萌生于表面.寿命分布的双峰特征使得传统的升降法不能用于确定材料的超高周疲劳的条件疲劳极限,超高周疲劳寿命的分散性远大于低周和高周疲劳寿命的分散性. Very high cycle fatigue (VHCF) test of 66 specimens of aluminum alloy LC4CS was done by piezo-electric fatigue testing machine, and the fatigue life data showed that the fatigue life distribution of the alloy under VHCF has a characteristic of duplex peak, which is related to the locations of fatigue crack initiation. For the specimens with shorter fatigue life the fatigue cracks initiate at the defects, such as inclusions and caves, and for the longer ones the cracks initiate near the surfaces of the specimens. This characteristic makes the staircase method measuring the fatigue limit inconsequential, and the fatigue life scatter of the VHCF is far larger than those of low cycle fatigue (LCF) and high cycle fatigue (HCF).
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2007年第4期399-403,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金项目10377007 航空支撑科技基金项目03A52005资助
关键词 LC4CS铝合金 超高周疲劳 寿命分布 双峰特征 aluminium alloy LC4CS, very high cycle fatigue, life distribution, duplex peakcharacteristic
  • 相关文献

参考文献22

  • 1Naito T, Ueda H, Kikuchi M. J Soc Mater Sci, 1983; 32:1162
  • 2Lukas P, Kunz L. Fatigue Fract Eng Mater Struct, 2002;25:747
  • 3Emura H, Asami K. Trans JSME, 1989; 55A: 45
  • 4Kuroshima Y, Saito Y, Shimizu M, Kawasaki K. Trans JSME, 1994; 60A: 2710
  • 5Nakamura T, Kaneko M, Tanabe T, Jinbo K, Nagai F.Trans JSME, 1995; 61A: 441
  • 6王清远.超高强度钢十亿周疲劳研究[J].机械强度,2002,24(1):81-83. 被引量:21
  • 7Umezawa O, Nagai K. Metall Mater Trans, 1998; 29A:809
  • 8Umezawa O, Nagai K. ISIJ Int, 1997; 37:1170
  • 9Danninger H, Spoljaric D, Weiss B, Stickler R. Z Metallkd,1998; 89:135
  • 10Bathias C. Eng Mater Struct, 1999; 22:559

二级参考文献41

  • 1倪金刚,Bathi.,C.超声振动载荷下合金的疲劳寿命性能研究[J].航空学报,1994,15(11):1386-1389. 被引量:4
  • 2倪金刚.超声疲劳试验技术的应用[J].航空动力学报,1995,10(3):245-248. 被引量:12
  • 3[1]Wang Q Y, Berard J Y, Bathias C, et al. Gigacycle fatigue of ferrous alloys. Fatigue Fract Engng Mater Struct, 1999,22(8): 667 ~ 672.
  • 4[2]Wang Q Y, Berard J Y, Bathias C, et al. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue Fract Engng Mater Struct, 1999,22(8) :673 - 677.
  • 5[3]Suresh S. Fatigue of materials. 2nd edition, Cambridge, UK: Cambridge University Press, 1998.
  • 6[4]Umezawa, Nagai K. Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature. Metallurgical and Materials Transactions, 1998,29A:809 ~ 822.
  • 7[5]Umezawa, Nagai K. Subsurface creck generation in high-cycle fatigue for high strength alloys. ISIJ International, 1997, 37(12) :1 170~ 1 179.
  • 8[6]Kanazawa K, Nishijima S. Fatigue fracture of low alloy steel at ultra-highcycle region under elevated temperature condition. Zairyo/Joumal of the Society of Materials Science, Japan, 1997, 46(12): 1 396 ~ 1 401.
  • 9[7]Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of supedong fatigue failure in steels. Fatigue Fract Engug Mater Struct, 1999,22(7) :581 ~ 590.
  • 10[8]Nishijima S, Kanazawa K. Stepwise S-N curve and fish-eve failure in gigacyele fatigue. Fatigue Fract Engng Mater Struct. 1999. 22 ( 7 ): 601 ~607.

共引文献37

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部