期刊文献+

点接触润滑粗糙表面滑动摩擦力的预测研究 被引量:21

Prediction of Sliding Friction Force of Rough Surfaces in Lubricated Point Contacts
下载PDF
导出
摘要 在整个润滑区域内基于统一Reynolds方程的混合润滑模型,根据流变模型计算流体摩擦力,根据边界膜极限剪应力模型计算微突体接触摩擦力,二者相加得到混合润滑摩擦力.分析了粗糙度幅值和纹理对摩擦系数的影响以及非牛顿流变模型对流体摩擦系数的影响.模拟跨越整个润滑区,即弹流润滑、混合润滑和边界润滑,得到完整的Stribeck曲线.结果表明,表面越粗糙,混合润滑的摩擦系数越大,弹流润滑和边界润滑时粗糙度幅值影响很小.交叉斜纹的润滑效果优于横向纹理.不同极限剪应力流变模型计算的摩擦系数相差不大. A mixed lubrication model, based on an unified Reynolds equation in all lubrication regimes including elastohydrodynamic, mixed and boundary lubrication, for prediction of the sliding friction between rough surfaces in point contacts, was developed. In the calculation, the fluid traction in the lubrication region was determined in terms of rheology model for the lubricant, while the friction from asperity contact was calculated by limiting shear stress model of boundary film. Thus the total friction was obtained by summing up the two components. Then, the effects of roughn ess amplitude and texture on friction coefficient were investigated. The magnitude of fluid friction coefficient from the different non-Newtonian fluid models with limiting shear show that a rougher surface would give rise to higher friction coefficient in stress was also compared. The results mixed lubrication regime, and higher critical speed of transition from full-film elastohydrodynamic to mixed lubrication. But roughness amplitude has less effect in hydrodynamic and boundary lubrication. Cross texture is more beneficial to lubrication than the transverse if the operating conditions are the same. Different rheology models with limiting shear strength have little effect on prediction of fluid traction under the same operating conditions.
出处 《摩擦学学报》 EI CAS CSCD 北大核心 2007年第2期152-155,共4页 Tribology
基金 美国通用汽车公司资助项目
关键词 测量表面 润滑状态 摩擦系数 STRIBECK曲线 measured surface, lubrication state, friction coefficient, Stribeck curve
  • 相关文献

参考文献10

  • 1Mihailidis A,Retzepis J,Salpistis C,et al.Calculation of friction coefficient and temperature field of line contacts lubricated with a non-Newtonian fluid[J].Wear,1999,232:213-220.
  • 2Jacod C H,Venner P M Lugt.Influence of longitudinal roughness on friction in EHL contact[J].J Trib,2004,126:473-481.
  • 3Bartel D,Deters L.Calculation of a Stribeck curve of a journal bearing[J].Proceedings of the 25th Leeds-lyon on Tribology,1998,231-240.
  • 4王慰祖,黄平.不同表面粗糙度的摩擦副润滑状态的Stribeck曲线研究[J].摩擦学学报,2004,24(3):254-257. 被引量:27
  • 5王文中,王慧,胡元中.润滑接触中弹性变形的快速数值计算[J].摩擦学学报,2002,22(5):390-394. 被引量:20
  • 6杨沛然,崔金磊,兼田桢宏,王静.线接触弹性流体动力润滑的供油条件分析[J].摩擦学学报,2006,26(3):242-246. 被引量:27
  • 7Hu Y Z,Zhu D.A full numerical solution to the mixed lubrication in point contacts[J].ASME J Tribology,2000,122:1-9.
  • 8Wang W Z.Numerical simulation and experimental studies on mixed lubrication[D].Beijing:Tsinghua University,2003.
  • 9Erik Hglund.Influence of lubricant properties on elastohydrodynamic lubrication[J].Wear,1999,232:176-184.
  • 10Rabinowicz E.Friction-especially low friction[C].Massachusetts:Fundamentals of Tribology,1978.

二级参考文献22

  • 1HUANG Ping,Li Zhiheng,MENG Yonggang,WEN Shizhu 1. Mechatronic Engineering Department, South China University of Technology, Guangzhou 510641, China 2. National Tribology Laboratory, Tsinghua University, Beijing 100084, China.Study on hydrodynmic lubrication with second-order thed (Ⅰ)——Basic equations[J].Science China Mathematics,2001,44(S1):1-7. 被引量:4
  • 2Li Zhiheng,HUANG Ping,MENG Yonggang,WEN Shizhu 1. Mechatronic Engineering Department, South China University of Technology, Guangzhou 510641, China,2. National Tribology Laboraory, Tsinghua University, Beijing 100084, China.Study on hydrodynamic lubrication with second-order fluid (Ⅱ)——Numerical Analysis[J].Science China Mathematics,2001,44(S1):8-13. 被引量:4
  • 3[1]Lubrecht A A, Ioannides E. A Fast Solution of the Dry contact Problem and Associated Surface Stress Field, Using Multilevel Techniques[J]. ASME Journal of Tribology, 1991, 113: 128-133.
  • 4[2]Hu Y Z, Barber Gary C. Numerical Analysis for the Elastic Contact of Real Rough Surfaces[J]. STLE Tribology Trans, 1999, 42: 443-452.
  • 5[3]Nogi T, Kato T. Influence of a hard surface layer on the limit of elastic contact. Part 1: Analysis using a real surface model[J]. ASME Journal of Tribology, 1997, 119: 493-500.
  • 6[4]Ju Y, Farris T N. Spectral Analysis of Two-Dimensional Contact Problems[J]. Transactions of the ASME, 1996, 118: 320-328.
  • 7[5]Polonsky I A, Keer L M. Fast methods for solving rough contact problems: a comparative study[J]. ASME Journal of Tribology, 2000, 122: 36-41.
  • 8[6]Liu S, Wang Q, Liu G. A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses[J]. Wear, 2000, 243: 101-111.
  • 9[7]Johnson K L. Contact mechanics[M]. London: Cambridge University Press, 1985.
  • 10[8]Burrus C S, Parks T W. DFT/FFT and Convolution Algorithms theory and implementation[M]. New York: Rice University, 1984, 1985.

共引文献69

同被引文献234

引证文献21

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部