期刊文献+

一种关系型数据库并行概念学习系统的探讨

Research on Parallel Concept Learning System Based on Relational Database
下载PDF
导出
摘要 关系型数据库中包含了大量的关系模式,其中的数据结构一般为结构化或半结构化数据。通过机器的概念学习,从这些数据结构中提取信息、得到更高层次的概念,这个机器学习的过程效率高低,将直接影响概念的获取,建立一个并行概念学习系统是一种比较可行的方法。文中探讨了关系型数据库的并行概念学习方法,给出了一种并行学习策略,建立了一种并行概念学习系统,可以有效地提高关系型数据库概念学习的效率,从而挖掘出更高层次的概念。 In relational database,there are massive relational patterns,in which,data structure is generally structured data or semi-structured data.Through machine concept learning,information of these data structure was abstracted,and more pro- found concepts were obtained.The efficiencyof this machine learning process will directly affect the gaining of concepts.Thus, establishing a parallel concept learning system is a feasible method.In the article,the parallel concept learning method of rela- tional database has been discussed,one kind of parallel study strategy has been put forward and one parallel concept learning system has been setup so as to effectively enhance the efficiency ofthe concept learning of relational database,and more profound concepts will thus be developed.
出处 《微型电脑应用》 2007年第3期53-54,58,共3页 Microcomputer Applications
关键词 数据库 并行 概念学习 Concept learning Parallel Feasibility Implementation
  • 相关文献

参考文献4

二级参考文献14

  • 1陈国良,并行算法的设计与分析,1994年
  • 2上海交大远程教育中心,HTML 语言参考 .WWW书籍,1998年
  • 3Solice P., Krogh A.. Learning with ensembles: How over-Fiting can be useful. In: Touretzky D., Mozer M., Hasselmo M. eds.. Advances in Neural Information Processing Systems, 1995, 7: 231~238.
  • 4Schapire R.E.. The strength of weak learnability. Machine Learning, 1990, 5(2): 197~227.
  • 5Friedman L.. Bagging predictors. Machine Learning, 1996, 24(2): 123~140.
  • 6Jang M., Cho S.. Observational learning algorithm for an ensemble of neural networks. Pattern Analysis & Applications, 2002, 5: 154~167.
  • 7Zhou Z.-H., Wu J.-X., Tang W.. Ensemble neural networks: Many could be better than all. Artificial Intelligence, 2002, 137(1~2): 239~263.
  • 8Zhou Z.-H., Wu J.-X., Tang W., Chen Z.-Q.. Combining regression estimator: GA-based selective neural network Ensemble. International Journal of Computational Intelligence and Applications, 2001, 1(4): 341~356.
  • 9Perrone M.P., Cooper L.N.. When networks disagree: Ensemble method for neural networks. In: Mammone R.J. eds.. Artificial Neural Networks for Speed and Vision, New York: Chapman & Hall, 1993, 126~142.
  • 10Opitz D., Shavlik J.. Actively searching for an efficient neural network ensemble. Connection Science, 1996, 8(3~4): 337~353.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部