期刊文献+

一种多目标优化的多概率模型分布估计算法 被引量:6

An Estimation of Distribution Algorithm Based on Multi-Probability Model for Multi-Objective Optimization
下载PDF
导出
摘要 提出了一种用于多目标优化的多概率模型分布估计算法,该算法在进化的每一代中使用多个概率模型来引导多目标优化问题柏拉图(Pareto)最优域的搜索。分布估计算法使用概率模型引导算法最优解的搜索,而使用多个概率模型可以保持所得多目标优化问题最优解集的多样性。该算法具有很强的寻优能力,所得结果可以很好地覆盖Pareto前沿。实验通过优化一组测试函数来评价该算法的性能,并与其它多目标优化算法进行了比较,结果表明该算法相比于其它同类算法可以更好地解决多目标优化问题。 A new Estimation of Distribution Algorithm based on multi - probability model for multi - objective optimization is presented. This algorithm guides searching Pareto - front of multi - objective optimization problem by using multi - probability model at each generation. Estimation of Distribution Algorithms use probabilistic model to search for problem' s optimal solutions, and using multi - probability model can maintain the diversity of multi - objective optimization problem's optimal set. This algorithm has the powerful ability of searching optimal, and the result can cover the Pareto - front. A set of experiments has been implemented to evaluate the performance of this algorithm by optimizing a group of test function set, and compare with other multi - objective optimization algorithms. The results show that the new algorithm presented can perform better in solving multi - objective optimization problems.
出处 《计算机仿真》 CSCD 2007年第4期180-182,234,共4页 Computer Simulation
基金 国家自然科学基金(60401015) 安徽省自然科学基金(050420201)
关键词 多目标优化 多概率模型 分布估计算法 柏拉图最优域 Multi - objective optimization Multi - probability model Estimation of distribution algorithms Pareto optimal - front
  • 相关文献

参考文献10

  • 1H Mühlenbein and G Paa.From recombination of genes to the estimation of distributions I.Binary parameters[C].Parallel Problem Solving from Nature-PPSN IV,1996.178-187.
  • 2M Pelikan,D E Goldberg and F Lobo.A survey of optimization by building and using probabilistic models[R].IlliGAL Tech.Rep.99018.,1999.
  • 3M Pelikan,D E Goldberg and E Cantú-Paz.BOA:The Bayesian optimization algorithmp[C].Proc.Genetic and Evolutionary Computation Conf.(GECCO-99),1999,I:525-532.
  • 4P Larra aga,R Etxeberria,J A Lozano and J M Pe a.Optimization by Learning and Simulation of Bayesian and Gaussian Networks[R].Dept.Comput.Sci.Artific.Intell.,Univ.Basque Country,Tech.Rep.EHUKZAA-IK-4/99,1999.
  • 5C M Fonseca,P J Fleming.Genetic algorithms for multiobjective optimization:formulation,discussion and generation[C].Proceedings of the 5th International Conference on Genetic Algorithms,1993:416-423.
  • 6J Horn,N Nafpliotis.Multiobjective optimization using the niched Pareto genetic algorithm[R].USA:IlliGAL Report 93005,1993.
  • 7N Srinivas,K Deb.Multiobjective optimization using nondominaed sorting in genetic algorithms[J].Evolutionary Computation,1994,2 (3):221-248.
  • 8E Zitzler,K Deb and L Thiele.Comparison of multiobjective evolutionary algorithms:Empirical results[J].Evolutionary Computation,2000,8 (2):173-195.
  • 9Pareto V Cours D Economie Politique[M].F Rouge,Lausanne,1896,Ⅰ and Ⅱ.
  • 10O Duda,E Hart and G Stork.Pattern Classification(Second Edition)[M].USA:John Wiley & Sons,Inc,2001:450-452.

同被引文献64

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 4张利彪,周春光,马铭,孙彩堂.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184. 被引量:29
  • 5SCHAFFER J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms [ C ]//Proc. of the 1 st International Conference on Genetic Algorithms. Lawrence Erlbaum,1985:93-100.
  • 6FONSECA C M, FLEMING P J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generation [ C]//Forrest S. ed. Proc. of the 5th International Conference of Genetic Algorithms. San Mateo, California, 1993:416-423.
  • 7HORN J, NAFPKIOTIS N. Multiobjective Optimization using the Niched Pareto Genetic Algorithm, University of Illinois at Urbana-Champaign [ R ]. USA : Urbana, Illinois, Technical Report, IlliGAL Report 93005,1993.
  • 8SRINIVAS N, DEB K. Multiobjective Optimization Using Nondominated Sorting in Gentic Algorithms [ J]. Evolutionary Computation, 1994,2 ( 3 ) :221-248.
  • 9DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Muhiobjective Genetic Algorithm : NSGA-II [ J ]. IEEE Transactions On Evolutionary Computation,2002,6 (2) : 182-197.
  • 10ZITZLER E,THIELE L. Multiobjective Optimization using Evolutionary Algorithms-A Comparative Case Study[ C]//EIBEN A E, BACK T,SCHOENAUER M,SCHWEFEL H Peds. Parallel Problem Solving from Nature. Berlin,Germany:Springer,1998:292-301.

引证文献6

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部