期刊文献+

分布式贝叶斯数据融合系统的遗传算法优化 被引量:2

Optimization of Distributed Bayesian Fusion System Based on Genetic Algorithm
下载PDF
导出
摘要 数据融合是将多个传感器的信息加以集成,进行综合利用,其性能优于单传感器检测。寻找分布式并联融合系统的全局最优解需要求解一组耦合的非线性方程,运算量随着系统中传感器数量的增加迅速增长,传统方法很难求解。文中分析了融合的结构,重点研究了基于遗传算法的分布式贝叶斯融合系统的全局优化。采用穷举法列举所有可行融合规则,用遗传算法搜索相应规则下的最优解,实现了系统解耦。通过比较各融合规则下的最优解,得出分布式并联融合检测系统的全局最优解。仿真结果表明,该方法求解有效,建立了全局最优的贝叶斯融合检测系统。 Data from multiple sensors were synthesized in data fusion detection system, whose performances were respected better than single sensor detection's. To obtain the global optimizing solution of distributed Bayesian fusion system, a group of coupled nonlinear equations need to be solved. As the number of sensors grows, the computational burden grows rapidly. It can't be resolved by traditional methods. Structures of data fusion system were presented. Distributed Bayesian detection fusion system was formulated. To establish the global optimizing Bayesian detection fusion system, combination of exhaustively enumerating search and genetic algorithm were introduced. The simulation results prove the validity of the algorithm.
出处 《计算机仿真》 CSCD 2007年第4期183-185,共3页 Computer Simulation
关键词 数据融合 贝叶斯检测 遗传算法 分布式 Data fusion Bayesian detection Genetic algorithm Distributed
  • 相关文献

参考文献6

  • 1白银生,赵俊渭,相明,王峰.窄带水声信号的分布式检测融合[J].系统仿真学报,2003,15(7):931-933. 被引量:9
  • 2Imad Y Hoballah,Pramod K Varshney.Distributed Bayesian Signal Detection[J].IEEE Trans on Information Theory,sept.1989,35(5):995-1000.
  • 3Ramanarayanan Viswanathan,Pramod K Varshney.Distributed Detection With Multiple Sensors:Part I Fundamentals[C].Proceedings of the IEEE,Jan.1997,85 (1):54-63.
  • 4玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2003..
  • 5Melanie Mitchell.An introduction to genetic algorithms[M].Cambridge,Massachusetts:MIT Press,1998.
  • 6Chris Houck,Jeff Joines and Mike Kay.A Genetic Algorithm for Function Optimization:A Matlab Implementation[R].NCSU-IE TR 95-09,1995.

二级参考文献7

  • 1Ming Xiang and Junwei Zhao. On the Performance of Distributed Neyman-Pearson Detection Systems[J]. IEEE Trans. on SMC, 2001,31(1): 78-83.
  • 2Burdic W S. Underwater Acoustic System Analysis, second edition[M]. Prentice Hall, 1992.
  • 3Nielsen R O. Sonar Signal Processing[M]. Arch House, 1991.
  • 4Urick R J. Principles of underwater sound, 3d edition[M].McGraw-Hill Book Company, 1983.
  • 5Vacoaro,R.J. The Past, Present, and Future of Underwater Acoustic Signal Processing [J]. IEEE Signal Processing Magazine, Jul 1998,15(4):21-51.
  • 6Fawcett J.A. Effect of Course Maneuvers on Bearings-only Range Estimation [J]. IEEE Trans. Acoustics, Speech, and Signal Processing,1988, 36(8): 1193-1199.
  • 7Feder, M. Weinstein E. Parameter Estimation of Superimposed Signals Using the EM Algorithm [J]. IEEE Trans. Acoustics, Speech,and signal, Processing. 1988, 36(4): 477-489.

共引文献59

同被引文献32

  • 1王肖飞,林勇,许诚.弹道导弹落点精度分析与仿真方法研究[J].海军航空工程学院学报,2006,21(1):159-162. 被引量:5
  • 2王志刚,芮国胜,张磊海.基于Bootstrap滤波的单站无源定位算法[J].海军航空工程学院学报,2005,20(3):319-321. 被引量:6
  • 3杨露菁,邹岗,李启元.多传感器分布式融合检测自适应算法[J].探测与控制学报,2006,28(5):28-30. 被引量:1
  • 4LEON REZNIK, GREGORY VON PLESS, TAYEB AL KARIM. Distributed Neural Networks for Signal Change Detection: On the Way to Cognition in Sensor Networks [J]. IEEE Sensors Journal,2011,11(3) :791-798.
  • 5WILLIAM A LINTZ,JOHN C MCEACHEN. A Method for Emphasizing Signal Detection in Wireless Sensor Network Radio Frequency Array Operation [ C ]. Proceedings of the 42nd Hawaii International Conference on System Sci- ences, 2009.
  • 6WENDI RABINER HEINZELMAN, ANANTHA CHAN- DRAKASAN, HARI BALAKRISHNAN. Energy-Efficient Communication Protocol for Wireless Microsensor Net- works[ C]. Proceedings of 33rd Hawaii International Con- ference on System Sciences,2000.
  • 7TANDRA R,SAHAI A. Fundamental Limits on Detection in Low SNR Under Noise Uncertainty[ C]. Proc IEEE Int Conf Wireless Networks, Commun and Mobile Computing, Maui, 2005: 464-469.
  • 8DIGHAM F,ALOUINI M,SIMON M. On the Energy De- tection of Unknown Signals Over Fading Channels [ C ]. Proc IEEE Int Conf Commun, Seattle, Washington, 2003 : 3 575-3 579.
  • 9CHEN Y F. Improved Energy Detector for Random Sig- nals in Gaussian noise[ J]. IEEE Communications,2010, 9(2) :558-563.
  • 10TIAN Z, GIANNAKIS G B. A Wavelet Approach to Wide- band Spectrum Sensing for Cognitive Radios [ A ]. Crown- corn 2006, Mykonos,Greece, 2006.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部