期刊文献+

基于模糊神经网络的逆变点焊电源恒电流控制设计及仿真 被引量:4

Design and simulating of inverter spot-welding power supply with constant current based on fuzzy neural network
下载PDF
导出
摘要 推导了逆变点焊过程控制模型,并构建了逆变点焊模糊神经网络恒电流控制系统结构。根据该模型采用先正弦后恒定输入的方法对模糊神经网络(FNN)进行分段离线学习,提高网络的泛化能力和自适应能力。在线控制时,利用训练后的网络仅做正向模糊计算,输出逆变桥开关管占空比改变量的方法保证逆变器恒电流输出。最后使用MATLAB高级语言编程,完成了整个系统的仿真实验。仿真结果表明:分段训练后的FNN使用该方法可以实现逆变点焊电源的恒电流控制。 A controlling model of inverter spot-welding process and a fuzzy neural network configuration about inverter spot-welding with constant current control were built in this paper.This fuzzy neural network was trained by off-line method to enhance the generalization and self-adaption ability with the way that sinusoidal trace input firstly,and then constant input.A method that just does some ositive-going calculations to input modifications of the duty cycle was utilized to achieve constant current output of the inverter,when this trained network was used in on-fine control.In the end.the emulator experimentation of the whole system was finished with MATLAB. The simulation results show the constant-current of inverter spot-welding power supply can be actualized by this method.
出处 《电焊机》 2007年第4期10-13,16,共5页 Electric Welding Machine
关键词 逆变点焊 FNN 离线学习 恒电流控制 inverter spot-welding FNN off-line train constant current control
  • 相关文献

参考文献2

二级参考文献12

共引文献34

同被引文献15

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部