期刊文献+

一种基于稀疏分解去除EEG信号中MRI伪迹的新方法 被引量:1

A New Method Based on Sparse Component Decomposition to Remove MRI Artifacts in the Continuous EEG Recordings
下载PDF
导出
摘要 在脑电图(Electroencephalography,EEG)和功能磁共振成像(Functional magnetic resonance imaging, FMRI)同时记录时,如何有效的去除混入EEG信号中的强磁共振(Magnetic resonance imaging,MRI)伪迹干扰信号是当前在EEG和FMRI的联合研究中面临的一个信号前期处理难点。主要从MRI干扰信号和EEG信号在时空上的差别出发,提出了一种基于混合过完备库的稀疏成分分析的分解方法,实现了强MRI干扰下的EEG信号的估计。在方法实现中,首先利用小波和离散余弦构造能体现MRI干扰和EEG时空特性差别的混合过完备库,然后通过匹配追踪(Matching pursuit,MP)方法在混合过完备库中的学习,实现MRI伪迹的消除。对模拟数据以及真实记录的混入了MRI干扰的EEG信号的估计实验结果,证实了该方法的有效性。 How to effectively remove the magnetic resonance imaging (MRI) artifacts in the electroencephalography (EEG) recordings, when EEG and functional magnetic resonance imaging (FMRI) are simultaneous recorded, is a challenge for integration of EEG and FMRI. According to the temporal-spatial difference between MRI artifacts and EEG, a new method based on sparse component decomposition in the mixed over-complete dictionary is proposed in this paper to remove MR artifacts. A mixed over-complete dictionary (MOD) of waveletes and discrete cosine which can exhibit the temporal-spatial discrepancy between MRI artificats and EEG is constructed first, and then the signals are separated by learning in this MOD with matching pursuit (MP) algorithm. The method is applied to the MRI artifacts corrupted EEG recordings and the decomposition result shows its validation.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2007年第2期439-443,共5页 Journal of Biomedical Engineering
基金 教育部科学技术研究重点资助项目(02065) 高等学校博士学科点专项科研基金资助 教育部青年教师奖励计划资助
关键词 磁共振成像伪迹 混合过完备库 稀疏成分分析 脑电图 Magnetic resonance imaging artifacts Mixed over-complete dictionary (MOD) Sparse component analysis (SCA) Electroencephalography (EEG)
  • 相关文献

参考文献6

  • 1Ellingson ML,Liebenthal E,Spanaki MV.Ballistocardiogram artifact reduction in the simultaneous acquisition of auditory ERPS and fMRI.NeuroImage,2004,22:1534
  • 2Allen PJ,Josephs O,Turner R.A method for removing imaging artifact from continuous EEG recorded during functional MRI.Neurolmage,2004;12:230
  • 3傅霆,尧德中.稀疏分解的加权迭代方法及其初步应用[J].电子学报,2004,32(4):567-570. 被引量:27
  • 4Huo XM.Sparse image representation via combined transforms.PHD Paper of Stanford Univ 1999,available online at:http://www.isye.gatech.edu/~xiaoming
  • 5Mallat S,Zhang Z.Matching pursuit in a time-frequency dictionary.IEEE Transactionson Signal Processing,1993;41:3397
  • 6Robinson PA,Whitehouse RW,Rennie CJ.Nonuniform corticothalamic continuum model of electroencephalographic spectra with application to split-alpha peaks.Phys Rev,2002,E 68,021922

二级参考文献10

  • 1B A Olshausen,D J Field.Sparse coding with an overcomplete basis set:a strategy employed by V1[J]? Vision Research,1997,37:3311-3325.
  • 2M Lewicki,T Sejnowksi.Learning overcomplete representations[J].Neural.Computation,2000,12:337-365.
  • 3Chen S S,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM J.Sci Comp,1999,20(1):33-61.
  • 4Michael Zibulevsky,Barak A Pearlmutter.Blind source separation by sparse decomposition in a signal dictionary[J].Neural Computation,2001,13:863-882.
  • 5Michael Zibulevsky,Yehoshua Y Zeevi.Extraction of a Source from Multichannel Data Using Sparse Decomposition[R].Available online at:HYPERLINK ''http://ie.technion.ac.il/-mcib'' http://ie.technion.ac.il/-mcib
  • 6Huo Xiao-ming.Sparse Image Representation via Combined Transforms[D].PH.D Paper of Stanford univ.1999 Available online at: HYPERLINK ''http://www.isye.gatech.edu/-xiaoming'' http://www.isye.gatech.edu/-xiaoming.
  • 7Stephance Mallat.Sihgularity dection and processing with wavelets[J].IEEE trans on information theory,1992,38:617-643.
  • 8R R Gharieb,Andrzej Cichocki,et al.Noise reduction in brain evoked potentials based on third-order correlations[J].IEEE trans on Biomedical Engineering,2001,48:501-512.
  • 9Donoho D L.Sparse Components of Images and Optimal Atomic Decompositions[R].1998.Available online at: HYPERLINK ''http://www-stat.stanford'' http://www-stat.stanford.edu/-donoho/Reports/
  • 10B A Olshausen,D J Field.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,381:607-609.

共引文献26

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部