期刊文献+

基于分布估计算法的组合电路测试生成 被引量:2

Automatic Test Pattern Generation with Estimation of Distribution Algorithms for Combinational Circuits
下载PDF
导出
摘要 基于遗传算法生成的测试矢量集的故障覆盖率要低于确定性方法.本文分析指出造成这种现象的一个可能原因在于,组合电路测试生成过程中存在高阶、长距离模式,从而导致遗传算法容易陷入局部极值或早熟收敛.为此,本文首次提出使用分布估计算法生成测试矢量.该方法使用联合概率分布捕捉电路主输入之间的关联性,从而避免了高阶、长距离模式对算法的影响,缓解了算法早熟收敛问题.针对ISCAS-85国际标准组合电路集的实验结果表明,该方法能够获得较高的故障覆盖率. The fault coverages achieved by the test generation procedures based on genetic algorithms are smaller than the deterministic test generation procedures for combinational circuits.One of the possible causes for this deficiency is the high,long-distance schema, which exists in the process of automatic test pattern generation. Thus genetic algorithms in dealing with such problems easily fall into local optima or premature convergence.In this work,we firstly propose the test generation procedures based on estimation of distribution algorithms. Estimation of distribution algorithms are able to capture the interrelations between the primary inputs by joint probability distribution. And therefore obviate the influence of the high, long-distance schema;alleviate the problem of premature convergence. The experimental results for benchmark circuits prove that the proposed procedure can achieve higher fault coverage.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第B12期2384-2386,共3页 Acta Electronica Sinica
关键词 分布估计算法 自动测试生成 组合电路 estimation of distribution algorithms automatic test pattern generation combinational circuits
  • 相关文献

参考文献9

  • 1P H Ibarra, S K Sahni. PolynomiaUy complete fault detection problems[J]. IEEE Transactions on Computers, 1975,24(3 ):242 - 249.
  • 2E M Rudnick, J H Patel, G S Greenstein. A genetic algorithm framework for test generation [ J]. IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems, 1997,16(9) :1034 - 1044.
  • 3I Pomeranz, S M Reddy. A cone-based genetic optimization procedure for test generation and its application to n-detections in combinational circuits[ J]. IEEE Transactions on Computers,1999,48(10) : 1145 - 1152.
  • 4D G Saab, J A Abraham. CRIS : a test cultivation program for sequential VLSI circuits [ J]. IEEE International Conference on Computer-Aided Design, 1992,10 :216 - 219.
  • 5E M Rudnick, J H Patel. Combining deterministic and genetic approaches for sequential circuit test generation [ A ]. Proceedings of the 32st Conference on Design Automation [ C ]. San Francisco: ACM Press, 1995.183 - 189.
  • 6P Larranaga, J A Lozano. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation [ M ]. Massachusetts: Kluwer Academic Press,2002.57 - 80.
  • 7H Muhlenbein, The exluation for response to selection and its use for prediction[J].Evolutionary Computation, 1998,5 (3) :303 - 346.
  • 8J S De Bonet,C L IsbeU,P Viola.MIMIC:finding optima by estimating probability densities[ A] .Advances in Neural Information Processing Systems[C] .Cambridge:MIT Press,1997.424- 430.
  • 9P Larranaga, R Etxeberria, J A Lozano, et al. Combinatorial optimization by learning and simulation of Bayesian networks[A]. Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence [ C ]. San Francisco: Morgan Kaufmann Press, 2000.343 - 352.

同被引文献15

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2Pelikan M,Goldberg D E,Lobo F.A Survey of Optimization by Building and Using Probabilistic Models[R].Urbana,Illinois:University of Illinois at Urbana-Champaign,IIhnois Genetic Algorithms Laboratory,1999.
  • 3L.aaanga P,Etxeberria R,Lozano A,J Pefia M.Optimization by learning and simulation of Bayesian and Gaussian networks[A].Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program[C].Las Vegas:Morgan Kaufmann,2000.201-204.
  • 4Bosman P A N,Thierens D.Expanding from discrete to continuous estimation of distribution algorithms:The IDEA[A].Proceedings of the 6th International Conference on Parallel Problem Solving from Nature-PPSN VI[C].London,UK:SpringerVerlag,2000.767-776.
  • 5Gordon N,Salmond D.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].Proc of Institute Electric Engineering,1993,140(2):107-113.
  • 6Doucet A,Godsill S,Andrieu.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statist Computer,2000,10(3):197-208.
  • 7Zhang Q.On the convergence of a factorized distribution algorithm with truncation selection[EB/OL].http://cswww.essex.ac.uk/sta/zhang/EDAWEB/,2006-05-10.
  • 8Eiko Sugawara; Masaru Fukushi, Susurnu Horiguchi Fault tolerant multi-layer neural networks with GA training [ A ]. Proc. 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems [C]. Boston, MA, USA, 2003. 328-335.
  • 9Larranaga P; Lozano J A. Estimation of distribution algorithms. A New Tool for Evolutionary Computation [ M ]. Boston: Kluwer Academic Publishers, 2002.
  • 10Sagarna R; Lozano J. On the performance of estimation of distribution algorithms applied to software testing [J]. Applied Artificial Intelligence, 2005, 19(5): 457-489.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部