期刊文献+

贝叶斯估值理论在小子样批次设备检测中的应用 被引量:1

The Application of Bayesian Estimate Theory in the Extreme-small-sample Tests of Batch Equipments
下载PDF
导出
摘要 本文针对机载无线电设备故障诊断定位率低的问题,提出利用先验故障信息指导批次定检的思想.通过研究批次定检设备的失效规律,运用贝叶斯理论估计小子样定检设备各模块的故障概率,并且提出了故障检测的4种指导方法.仿真试验结果表明可显著提高故障的一次定位准确率,减少故障查找时间,提高故障诊断效率. To resolve the problem of low locating rate in fault diagnosis of air-borne radio equipment, the idea was proposed to using preceding fault information in the tests of batch equipments. By studying the failure rules of batch equipments, the fault probability under extreme-small-sample conditions was estimated using Bayesian theory. Four methods were adopted to direct fault detecting. The simulation results showed that the strategy of this paper could improve the rate of locating faults correctly in one-time detecting progress and reduce the fault searching time, and can enhance the efficiency of fault diagnosis.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第B12期2530-2532,共3页 Acta Electronica Sinica
关键词 贝叶斯估计 批次定检 故障诊断 机载设备 Bayesian estimations tests of batch equipments fault diagnosis air-borne equipment
  • 相关文献

参考文献5

共引文献16

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部