期刊文献+

几类非线性超前型离散不等式 被引量:1

Some Nonlinear Discrete Inequalities with an Advanced Argument
下载PDF
导出
摘要 研究了几类非线性超前型离散不等式,这些不等式在某些超前型差分方程定性理论中有重要应用. In this paper,we investigate some nonlinear discrete inequalities with an advanced argument. The inequalities given here can be used as tools in the qualitative theory of certain advanced difference equations.
出处 《滨州学院学报》 2006年第6期17-22,共6页 Journal of Binzhou University
基金 国家自然科学基金项目(60674026 10671127) 山东省自然科学基金项目(Y2005A05) 山东省教育厅科技计划项目(J06P51)
关键词 非线性 超前项 离散不等式 差分方程 nonlinear advanced argument discrete inequality difference equation
  • 相关文献

参考文献10

  • 1Pachpatte B G.On some fundamental finite difference inequalities[].Tamkang Journal of Mathematics.2001
  • 2Meng Fan Wei,Li Wei Nian.On some new nonlinear discrete inequalities and their applicatioins[].Journal of Computational and Applied Mathematics.2003
  • 3Agarwal R P.Difference Equations and Inequalities[]..1997
  • 4Bledsoe M R,Díaz L,Naulin R.Linear difference equations with advanced arguments:existerceand asymptotic formulae[].Applicable Analysis.2000
  • 5Díaz L,Naulin R.Bounded solutions of nonlinear difference equations with advanced arguments[].Computers and Mathematics With Applications.2003
  • 6LüT,,Huang Y.A generalization of discrete Gronwall inequality and its application to weakly sin-gular Volterra integral equation of the second kind[].Journal of Mathematical Analysis and Applications.2003
  • 7Zhang Z,Li Q.Oscillation theorems for second-order advanced functional difference equations[].Computers and Mathematics With Applications.1998
  • 8Yang Enhao.A new nonlinear discrete inequality and its application[].Ann Differential Equa-tions.2001
  • 9Popenda J,Agarwal R P.Discrete Gronwall inequalities in many variables[].Computers and Mathematics With Applications.1999
  • 10Yang Enhao.A new integral inequality with power nonlinear and its discrete analogue[].Acta Mathematicae Applicatae Sinica.2001

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部