期刊文献+

一种基于《知网》的中文文本聚类算法的研究 被引量:7

Research of novel Chinese text clustering algorithm based on HowNet
下载PDF
导出
摘要 针对基于关键词集的中文文本聚类算法中存在的问题,将《知网》引入到中文文本的特征表示中,并在此基础上提出了一种基于《知网》的中文文本聚类算法。该算法在中文文本表示中加入了基于《知网》的概念特征,实验结果表明该算法能够更好地将语义相关的中文文档聚集在一起,与传统的基于关键词集的中文文本聚类算法相比,聚类质量得到了较大提高。 To settle the problem of Chinese text clustering algorithm based on keywords set,this paper introduces HowNet into the representation of Chinese text representation and presentes a Chinese text clustering algorithm based on HowNet.This algorithm adds the conceptual characteristic based on Hownet to the representation of Chinese text.Experimental results show that this algorithm can cluster the semantic relative Chinese text into the same cluster better and improve the quality of text clustering greatly.
作者 赵鹏 蔡庆生
出处 《计算机工程与应用》 CSCD 北大核心 2007年第12期162-163,共2页 Computer Engineering and Applications
基金 安徽省教育厅资助科研课题(the research Project of Department of Education of Anhui Province China under Grant No.2004kj011) 安徽省高校青年教师基金项目(No.2006jq1040)
关键词 向量空间模型 本体论 知网 Vector Space Model Ontology HowNet
  • 相关文献

参考文献6

二级参考文献20

  • 1董振东.语义关系的表达和知识系统的建造[J].语言文字应用,1998(3):79-85. 被引量:59
  • 2Abhitjit 徐勇等(译).神经网络模式识别及其实现[M].电子工业出版社,1996,6..
  • 3[1]Han, J., Cai, Y., Cercone, N. Knowledge discovery in databases: an attribute-oriented approach. In: Yuan, Le-yan, ed. Proceedings of the 18th International Conference on Very Large Data Bases. Vancouver: Morgan Kaufmann, 1992. 547~559.
  • 4[2]Srikant, R., Agrawal, R. Mining generalized association rules. In: Umeshwar, D., Gray, P.M.D., Shojiro, N., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.
  • 5[3]Han, J., Fu, Y. Discovery of multiple-level association rules from large database. In: Umeshwar, D., Gray, P.M.D., Shojiro, N., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 420~431.
  • 6[4]Oren, Z., Oren, E., Omid, M., et al. Fast and intuitive clustering of web document. In: Heckerman, D., Mannila, H., Pregibon, D., eds. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD'97). Newport Beach, CA: AAAI Press, 1997. 287~290.
  • 7[5]Cheung, D.W., Kao, B., Lee, J. W. Discovering user access patterns on the world-wide-web. In: Lu Hong-jun, Motoda, H., Liu, Huan, eds. Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: World Scientific, 1997. 303~316.
  • 8[6]Salton, G., Buckley, C. Term-Weighting approaches in automatic text retrieval. Information Processing and Management, 1988,24(5):513~523.
  • 9[7]Oren, Z. Clustering web documents: a phrase-based method for grouping search engine results [Ph.D. Thesis]. Seattle, WA: University of Washington, 1999.
  • 10[8]Bezedek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981.

共引文献62

同被引文献67

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部