期刊文献+

一些特殊图类乘积的离散度(英文)

Scattering Number of the Product of Some Special Classes of Graphs
下载PDF
导出
摘要 连通图的离散度是用s(G)来表示的,s(G)=max{ω(G-S)-|S|:ω(G-S)>1,SV(G)}.给出了两个完全图乘积的和一个完全图与路的乘积的离散度.还给出了两个完全图乘积的坚韧度. The scattering number s(G) of a noncomplete connected graph G is defined by s(G) = max ω(G - S) - |S| ω(G - S) 〉 1, S belont V(G)} . In this paper, we determine the scattering number of the product of two complete graphs and the product of a path and a complete graph. Moreover, we determine the toughness of the product of two complete graphs.
出处 《新疆大学学报(自然科学版)》 CAS 2007年第2期159-165,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 The project sponsored by a research grant from Xinjiang university and Math.dept.
关键词 离散度 坚韧度 图的乘积 Scattering number toughness product
  • 相关文献

参考文献12

  • 1Bondy J A, Murty U S R. Graph Theory with applications, Macmillan[M]. New York. London and Elsevier, 1976.
  • 2Hendry G R T. Scattering number and extremal non-hamiltonian graphs[J]. Discrete Math,1998,71:165-175.
  • 3Jamrozik J, Kalinowski R, Skupien Z. A catalogue of small maximal nonhamiltonian graphs[J]. Discrete Math, 1982,39:229-234.
  • 4Giakoumakis G, Roussel F, Thuillier H. Scattering number and modulor decomposition[J]. Discrete Math, 1997, 165/166: 321-342.
  • 5Giakoumakis G, Roussel F, Thuillier H. On P4 -tidy graphs[J]. Discrete Math and Theoretical Computer Science, 1997,(1):17-41.
  • 6Hoschtattler W, Tinhofer G. Hamiltonicity in graphs with few P4 s[J]. Rutcor Research Report,RRR, 1997 : 16- 93.
  • 7Ouyang K, Yu W. Relative breaktivity of graphs[J]. J Lanzhou University(Natural Sciences), 1993,29(3):43-49.
  • 8Zhang S,Wang Z. Scattering Number in graphs[J]. Networks, 2001,37:102-106.
  • 9Bauer D, Morgana A, Schmeichel E F. On the complexity of recognizing tough graphs[J]. Discrete Math, 1994, 124:13-17.
  • 10Kratsch D, Kloks T, Muuller H. Measuring the vulnerability for classes of intersection graphs[J]. Discrete Applied Math, 1997,77 (3) : 259-270.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部