期刊文献+

共轭A-调和张量的A_1(Ω)加权积分不等式(英文)

A_1(Ω)-weighted Integral Inequalities for Conjugate A-harmonic Tensors
下载PDF
导出
摘要 利用H lder不等式,我们得到了共轭A-调和张量的局部和整体A1(Ω)加权积分不等式,这些积分不等式可以看作是经典结论的推广. By Making use of HOlder inequality,we obtain Local and global A1 (Ω)- weighted integral inequalities for conjugate A- harmonic tensors,which can be considered as generalizations of the classical results.
作者 王红敏
出处 《湖州师范学院学报》 2007年第1期21-24,共4页 Journal of Huzhou University
基金 Research Supported by NSFC(10471149)
关键词 共轭A-调和张量 加权的积分不等式 L^s(μ)-平均区域 conjugate A- harmonic tensors weighted integral inequality L^s(μ) -averaging domain
  • 相关文献

参考文献8

  • 1Gao Hong - ya. Weighted Integral Inequalities for Conjugate A - harmonic Tensors[J].J Math Anal Appl, 2003,281:253-263.
  • 2Iwaniec T,Ding Shu-sen. Global Estimates for the Jacobian of Orientation Preserving Mappings[J].Com Math Appl,2005,50 : 707 - 718.
  • 3Iwaniec T, Lutoborski A. Integral Estimate for Null Lagrangians[J].Arch Rational Mech Anal 1993, 125:25-79.
  • 4Nolder C A. Global Integrability Theorems for A - harmonic Tensors[J].J Math Anal Appl, 2000,247:236-245.
  • 5Iwaniec T, Martin G. Geometric Function Theory and Nonlinear Analysis[M]. New York:Oxford University Press,2001. 451-474.
  • 6Bao Ge - jun. Aγ(λ)- weighted Integral Inequality for A - harmonic Tensors [J].J Math Anal Appl, 2000, 247 : 466-477.
  • 7Ding Shu -sen, Shi Pei - lin. Weighted Poineare - type Inequalities for Differential Forms in L^1(μ)- averaging Domain[J].J Math Anal Appl, 1998, 227:200-215.
  • 8Reshetnyak Yu G. Space Mappings with Bounded Distortion[M]. Providence: American Mathematical Society Press,1989. 217-243.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部