摘要
构造了解四维热传导方程的一族两层显格式,证明了当截断误差为O(△t+△x2)时,其稳定性条件为网比r=△t/△x2=△t/△y2=△t/△z2=△t/△w2≤11/24优于同类的其他显格式,当截断误差阶为O(△t2+△x4)时,此格式为一个简洁而实用的高精度两层显格式。
A class of two-level explicit difference schemes for solving 4-D heat equation are presented, when the order of trunction error is O(△t+△x^2), the stability condition is the mash ratio r=△t/△x^2=△t/△y^2=△t/△z^2=△t/△w^2≤11/24, which is better than that of all other explicit difference schemes. When the order of trunction error is O(△t^2+△x^4), it becomes a concise and practical explicit schemes of two level with high accuracy.
出处
《工程数学学报》
CSCD
北大核心
2007年第2期254-258,共5页
Chinese Journal of Engineering Mathematics
基金
河南省教育厅自然科学基础研究基金(20031100010).