期刊文献+

一类带有毒素生产的恒化器模型的定性分析 被引量:2

Qualitative Analysis of a Chemostat Model with Production of Toxin
下载PDF
导出
摘要 讨论了一类带有毒素生产的恒化器模型,获得了模型各类平衡点存在及稳定的充要条件,通过构造Dulac函数和Lyapunov函数和运用极限系统理论,证明了该模型符合竞争排斥原理,并且得到了各类微生物绝灭的完整分析结果。 A chemostat model with production of toxin is investigated, the necessary and sufficient conditions guaranteeing the existence and stability of all equilibria are found. By constructing the Dulac function and Lyapunov function, and using the theory of limit systems, the uniformity with the competitive exclusion principle is proved, and the complete results about extinction are obtained.
出处 《工程数学学报》 CSCD 北大核心 2007年第2期365-368,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(30670486) 国家科技攻关计划项目(2004BA719A01) 空军工程大学理学院科研基金.
关键词 恒化器模型 平衡点 稳定性 极限系统 chemostat model equilibrium stability limit system
  • 相关文献

参考文献6

  • 1Novick A,Sziliard L.Description of the chemostat[J].Science,1950,112:715-716
  • 2Smith H,Waltman P.The Theory of the Chemostat[M].Cambridge:Cambridge University Press,1995
  • 3Taylor P A,Williams J L.Theoretical studies on the coexistence of competing species under continuous-flow conditions[J].Canadian J Microbiol,1975,21:90-98
  • 4Hsu S B,Waltman P.Analysis of a model of two competitors in a chemostat with an external inhibitor[J].SIAM J Appl Math,1992,52:528-540
  • 5Hsu S B,Li Yen-Sheng,Waltman P.Competition in the presence of a lethal external inhibitor[J].Math Biosci,2000,176:177-199
  • 6Hsu S B,Waltman P.Competition in the chemostat when one competitor produces a toxin[J].Japan J Indust Appl Math,1998,15:471-490

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部