期刊文献+

小波去噪与平均算法去噪在拉曼光谱中的应用 被引量:6

Application of adaptive wavelet threshold denoising and average arithmetic in Raman spectra
下载PDF
导出
摘要 拉曼光谱分析中,噪声的存在常影响分析的准确度和检测限,现有滤波方法在光谱信号除噪方面有种种缺陷。使用自适应小波阈值函数滤噪法和平移不变量小波去噪法两种方法,并分别与传统方法平均算法相结合,实现了信号与噪音的有效分离,均取得了很好的效果。即使对信噪比小于1的高噪声信号也能够很好地保留了信号的细节,获取满意的处理结果。 During the spectrum analysis process, the noise usually influences the analytical accuracy and the detection limit. The existing filtering methods have various flaws in filtering the noise of spectral signal. Two methods are described and employed. The first one is adaptive wavelet threshold function denoising method, and another is a denoising method of wavelet transform based on translation invariance. At the same time, they are integrated with the classical average arithmetic respectively, then the signal is separated from the noise effectively and the result is satisfactory by using these integrated methods. These methods also can keep the main edges of the signal and obtain satisfactory processing results even for the signal whose signal-to-noise ratio is less than one.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第7期1504-1507,共4页 Computer Engineering and Design
关键词 小波阈值去噪 滤波 拉曼光谱 信号处理 平均算法 wavelet threshold function denoising wavelet filtering Raman spectra signal processing average arithmetic
  • 相关文献

参考文献8

二级参考文献30

  • 1Keim H,Trcker D,Mallats G,etal.On denoising and bestsignal representation[J].IEEE Trans action Information Theory,1999,5(7):2225-2238.
  • 2Jansen M,Malfait M,Bultheel A.Generalized cross validation for wavelet thresholding[J].Signal Processing,1997,56(1):33-44.
  • 3Donoho D L. De-noising via Soft-thresholding [J]. IEEE Transform. Information Theory, 1995, 41(3): 613~627.
  • 4Donoho D L, Johnstone I. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 1994, 81(3): 425~455.
  • 5Donoho D L. Nonlinear Wavelet Methods for Recovery of Signals, Desities and Spectra from Indirect and Noisy Data. Proceeding of Symp., 1993, 47: 173~205.
  • 6S Mallat. Theory for Multi-resolution Signal Decomposition: The Wavelet Representation [J]. IEEE Transations on Pattern Analysis and Machine Intelligence. 1989, 11 (7):674~693.
  • 7StephaneMallat著 杨力华 译.信号处理的小波导引(第2版)[M].北京:机械工业出版社,2002..
  • 8Donoho, D. L, Johnstone, 1. M.. Adapting to. unknown smoothness via wavelet shrinkage[J]. J. Am. Statist Ass., 1995,90(432):1200-1224.
  • 9Donoho, D. L.. De-Noising by soft-thresho-lding [J]. IEEE Trans. on IT. 1995,41(3):613-627.
  • 10Andrew B, Gao Hongye. Wave Shrinkage Function and Thresholds[J]. SPIE, 1995,2569:270-281.

共引文献80

同被引文献48

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部