期刊文献+

基于项的协同过滤在推荐系统中的应用研究 被引量:8

Research on application of item-based collaborative filtering in recommender systems
下载PDF
导出
摘要 分析基于项的协同过滤在推荐系统中应用及所存在的问题,提出了一个基于项的协同过滤改进算法,并给出了改进算法在标准数据集上的实验结果,对改进算法与原算法进行了相关性能的比较分析,证明了改进算法的有效性。最后,对研究进行了总结,指出存在的不足,提出了进一步研究的方向。 It analyzes application of item-based collaborative filtering in E-commerce recommender systems and the problems which item-based collaborative filtering is facing when it is applied in recommender systems. An improved method of item-based collaborative filtering algorithm is proposed. It is theoretically detailed analyzed and proved its feasibility. Then the experimental results that the new method is implemented with the benchmark experimental data set are given, the performance between the new method and the old one is compared and analyzed and the new method is proved valid. Finally, the research is summarized, some defects and the directions that will be further studied in the future.
作者 王霞
出处 《计算机工程与设计》 CSCD 北大核心 2007年第7期1719-1722,共4页 Computer Engineering and Design
关键词 协同过滤 推荐系统 项目相似性 推荐算法 平均绝对偏差 collaborative filtering recommender system item similarity recommendation algorithm MAE (mean absolute error)
  • 相关文献

参考文献8

  • 1Al Mamunur Rashid,Istvau Albert,Dan Cosley,et al.Getting to know you:Learning new user preference in recommender systems[C].San Francisco,California,USA:Proceedings of the 7th international Conference on Intelligent User Interfaces,2002.127-134.
  • 2Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast P romotion-tunable customer-item recommendation method based on conditional independent probabilities[C].Boston,Massachusetts,United States:Proceedings of ACM SIGKDD International Conference,2000.437-446.
  • 3Geroge Karypis.Evaluation of item-based top-N recommendation aAlgorithms[C].Atlanta,Georgia,USA:Proceedings of the Tenth International Conference on Information and Knowledge Management 2001.247-254.
  • 4Schafer J B,Konstan J,Riedl J.Application of dimcnsionality reduction in recommender system-A case study[C].Boston,MA,USA:Proceedings of the WebKDD Workshop at the ACM-SIGKDD Conference on Knowledge Discovery in Databases,2000.
  • 5Yu k,Wen Z,Xu X,et al.Feature weighting and instance selection for collaborative filtering[C].Munich,Gerneny:2nd International Workshop on Management of Information on the Web,in Conjunction with the 12th International Conference on DEXA,2001.285-290.
  • 6Kai Yu,Xiaowei Xu,Martin Ester,et al.Collaborative filtering and algorithms:Selecting relevant instances for efficient and accurate collaborative filtering[C].Atlanta,Georgia,USA:Proceedings of the Tenth International Conference on Information and Knowledge Management,2001.239-246.
  • 7Sarwar B M,Karypis G,Konstan J A,et al.Analysis of recommender algorithms for E-commerce[C].Minneapolis,Minnesota,USA:Proceedings of the ACM E-Commerce Conference,2000.158-167.
  • 8Jonathan L Herloeker,Joseph A Konstan,John riedl.Explaining collaborative filtering recommendations[C].Philadelphia,PA,USA:Proceedings of ACM Conference on Computer Supported Cooperative Work,2000.241-250.

同被引文献58

引证文献8

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部