期刊文献+

对称矩阵空间上保幂等性的映射(英文)

Maps on spaces of symmetric matrices preserving idempotence
下载PDF
导出
摘要 设F是一个域,Mn(F)是域F上的n×n矩阵空间,Sn(F)是Mn(F)中对称矩阵的全体.对Mn(F)中的任一线性子空间V,记IV为V中所有幂等元的集合.设V∈{Sn(F),Mn(F)},对任意的A,B∈V和λ∈F,如果A-λB幂等当且仅当Φ(A)-λΦ(B)幂等,则称映射Φ:V→V是保幂等性的.证明了:如果F的特征为0,Φ:Sn(F)→Sn(F),则Φ是一个保幂性映射当且仅当存在Mn(F)中的一个可逆阵P使得对Sn(F)中的每一个A都有Φ(A)=PAP-1,其中P满足PtP=aIn,a为F中的一个非零元. Suppose F is an arbitrary field. Let Mn(F) be the linear space of all n × n matrices over F, and let S. (F) be the subsets of Mn (F) consisting of all symmetric matrices. For a linear sudspace V of M (F), we denote by IV the subset of V consisting of all idempotence. Let V ∈ { Sn (F) ,Mn (F) } , a map Ф:V→V is said to preserve idempotence irA - λB is idempotent if and only if Ф(A) - λФ(B) is idempotent for any A, B ∈ V and λ ∈ F. When the characteristic of F is 0, it is shown that Ф : Sn (F)→ Sn (F) is a map preserving idempotence if and only if there exists an invertible matrix P ∈ Mn (F) with P^tP = al. for some nonzero scalar a in F such that Ф(A) = PAP^-1 for every A ∈ Sn(F).
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第2期195-198,共4页 Journal of Natural Science of Heilongjiang University
关键词 幂等性 对称阵 field idempotence symmetric matrix
  • 相关文献

参考文献8

  • 1CAO C G, ZHANG X. Linear preservers between matrix modules over connected commutative rings [ J ]. Linear Algebra Appl, 2005,397: 355 -366.
  • 2DOLINAR G. Maps on matrix algebras preserving idempotents[J]. Linear Algebra Appl, 2003,371 : 287 -300.
  • 3LI C K, PIERCE S. Linear preserver problems[J]. Amer Math Monthly, 2001,108:591 -605.
  • 4SEMRL P. Order - preserving maps on the poset of idempotent matrices [ J ]. Sci Math (Szeged) , 2003,69 : 481 - 490.
  • 5SEMRL P. Hua's fundamental theorems of the geometry of matrices and related results[J]. Linear Algebra Appl, 2003,361:161 -179.
  • 6LIU S W, ZHAO D B. Introduction to linear preserver problems[M]. Harbin: Harbin Press, 1997.
  • 7ZHANG X. Idempotence -preserving maps without the linearity and surjectivity assumptions[J]. Linear Algebra Appl, 2004,387:167 - 182.
  • 8ZHANG X. Linear operators that preserve pairs of matrices which satisfy extreme rank properties - a supplementary version[J]. Linear Algebra Appl, 2003, 375:283 -290.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部