摘要
设F是一个域,Mn(F)是域F上的n×n矩阵空间,Sn(F)是Mn(F)中对称矩阵的全体.对Mn(F)中的任一线性子空间V,记IV为V中所有幂等元的集合.设V∈{Sn(F),Mn(F)},对任意的A,B∈V和λ∈F,如果A-λB幂等当且仅当Φ(A)-λΦ(B)幂等,则称映射Φ:V→V是保幂等性的.证明了:如果F的特征为0,Φ:Sn(F)→Sn(F),则Φ是一个保幂性映射当且仅当存在Mn(F)中的一个可逆阵P使得对Sn(F)中的每一个A都有Φ(A)=PAP-1,其中P满足PtP=aIn,a为F中的一个非零元.
Suppose F is an arbitrary field. Let Mn(F) be the linear space of all n × n matrices over F, and let S. (F) be the subsets of Mn (F) consisting of all symmetric matrices. For a linear sudspace V of M (F), we denote by IV the subset of V consisting of all idempotence. Let V ∈ { Sn (F) ,Mn (F) } , a map Ф:V→V is said to preserve idempotence irA - λB is idempotent if and only if Ф(A) - λФ(B) is idempotent for any A, B ∈ V and λ ∈ F. When the characteristic of F is 0, it is shown that Ф : Sn (F)→ Sn (F) is a map preserving idempotence if and only if there exists an invertible matrix P ∈ Mn (F) with P^tP = al. for some nonzero scalar a in F such that Ф(A) = PAP^-1 for every A ∈ Sn(F).
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2007年第2期195-198,共4页
Journal of Natural Science of Heilongjiang University
关键词
域
幂等性
对称阵
field
idempotence
symmetric matrix