期刊文献+

基于Elman神经网络的甘肃电网负荷预测模型 被引量:13

Load Forecasting Model for Gansu Electric Power Network Based on Elman Neural Network
下载PDF
导出
摘要 为提高甘肃电网负荷预测精度,提出了一种基于神经网络的负荷预测方法。针对甘肃电力系统负荷数据的非线性和动态特性,在多层前向BP网络中引入特殊关联层,形成有“记忆”能力的Elman神经网络,从而可以映射系统的非线性和动态特性。在网络训练算法中,采用自适应学习速率动量梯度下降反向传播算法,显著提高了网络的训练速率,有效地抑制了网络陷入局部极小点。文中分别采用El-man神经网络与BP神经网络建立模型,对甘肃电网实际历史数据进行仿真预测,经分析比较,证明前者具有收敛速度快、预测精度高的特点。这表明利用Elman回归神经网络建模对甘肃电网负荷进行预测是可行的,能有效提高负荷预测精度,在负荷预测领域有着较好的应用前景。 In order to improve the precision of load forecasting of Gansu electric power network, an artificial neural network (ANN) approach for load forecasting is proposed For the nonlinear and dynamic behaviors of load of Gansu electric power system, a special correlation layer is appended to hidden layer of BP network to form an Elman neural network with memorial ability, with which the nonlinearity and the dynamic behavior of the system can be mapped. In the training algorithm of the network, a back-propagation algorithm with adaptive learning speed and momentum gradientfalling is used, which can obviously improve the training speed of the network and effectively prevent the network to trap in local minimum. The forecasting model tested by actual data from Gansu electric network is estabfished by using both Elman neural network and BP neural network. By analyzing and comparing, the former features quick convergence speed and high forecasting precision. The simulation results show that the method is feasible, which can effectively improve the precision of load forecasting and have bright prospect in load forecasting field.
出处 《现代电力》 2007年第2期26-29,共4页 Modern Electric Power
关键词 ELMAN神经网络 甘肃电网 预测模型 算法 BP神经网络 Elman neural network Gansu electric powernetwork forecasting model algorithm BP neural network
  • 相关文献

参考文献5

  • 1李金颖,牛东晓.非线性季节型电力负荷灰色组合预测研究[J].电网技术,2003,27(5):26-28. 被引量:47
  • 2邵莹,高中文.基于模糊集理论的短期电力负荷预测[J].信息技术,2005,29(5):18-20. 被引量:10
  • 3Kiartzis S J,Bakirtzis A G.Petridis V.Short-term load forecast-ing using neural networks[J].Electric Power Systems Research,1995,33:1-6.
  • 4Yalcinoz T,Eminoglu U.Short term and medium term power distribution load forecasting by neural networks[J].Energy Conversion and Management 2005,46:1393-1405.
  • 5Ghiassi M,Zimbra K David,Saidane.H.Medium term system load forecasting with a dynamic artificial neural network model[J].Electric Power Systems Research 2006,6:302-316.

二级参考文献10

  • 1邓聚龙(Deng Ju1ong).灰色预测与决策(Gray forecast and decision-making)[M].武汉:华中理工大学出版社(Wuhan:Press of Huazhong Un,1992..
  • 2Pindyck R S Rubinfe1d D L.计量经济模型与经济预测(Econometric mode1s and economic forecasts)[M].北京:机械工业出版社(Beijing:China Machine Press),1999..
  • 3Pardo A, Meneu V, Valor E. Temperature and seasonality influences on Spanish electricity load[J]. Energy Economics , 2002, (24): 55-70.
  • 4Liang Ruey-hsun, Cheng Ching-chi. Short - term Load Forecasting by a Neuro- fuzzy Based Approach[ J]. Electrical Power and Energy Systems,2002, (24): 103 - 111.
  • 5Liao Gwo-ching, Tsao Ta-peng. Application of Fuzzy Neural Networks and Artificial Intelligence for Load Forecasting [J]. Electrical Power Systems Research,2004,70:237- 244.
  • 6A1 - Kandari A M, Soliman S A, El - Hawary M E. Fuzzy Short - term Electric Load Forecasting[ J ]. Electrical Power and Energy Systems,2004,(26):111 - 122.
  • 7汪峰,于尔铿,阎承山,李晓彬,刘军,刘永奇.基于因素影响的电力系统短期负荷预报方法的研究[J].中国电机工程学报,1999,19(8):54-58. 被引量:50
  • 8史德明,李林川,宋建文.基于灰色预测和神经网络的电力系统负荷预测[J].电网技术,2001,25(12):14-17. 被引量:73
  • 9周佃民,管晓宏,孙婕,黄勇.基于神经网络的电力系统短期负荷预测研究[J].电网技术,2002,26(2):10-13. 被引量:93
  • 10范习辉,张勇传.短期电力负荷预测的GM(1,1)模型群方法及应用[J].水电能源科学,2002,20(3):77-79. 被引量:11

共引文献55

同被引文献95

引证文献13

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部