期刊文献+

一族变型Halley迭代方法的收敛性

Convergence of a family of the deformed Halley iterations
下载PDF
导出
摘要 研究了Banach空间中求解非线性算子方程的一族带参数的变型Halley迭代方法的收敛性问题;在二阶导数满足H lder条件下建立了它的半局部的收敛性定理及误差估计. The convergence problem of a family of the deformed Halley iterations with parameters for solving nonlinear operator equations in Banach spaces was studied. Under the assumption that the two derivative of an operator satisfied the HOlder condition, the semi-local convergence of the deformed Halley iterations were established. Finally, the corresponding error estimate was given.
作者 葛华丰
机构地区 台州学院数学系
出处 《浙江师范大学学报(自然科学版)》 CAS 2007年第2期152-157,共6页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省教育厅科研资助项目(20060074)
关键词 BANACH空间 非线性算子方程 变型Halley迭代 Holder条件 Banach space nonlinear operator equation deformed Halley iterations Holder condition
  • 相关文献

参考文献12

  • 1Kantorovich L.On Newton method(Russian)[J].Trudy Mat Inst Steklov,1949,28:104-144.
  • 2Wu Qingbiao,Zhao Yueqing.Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space[J].Appl Math Comp,2006,175 (2):1515-1524.
  • 3Hernandez M A.Chebyshev's Approximation Algorthms and Applications[J].Comp Math App1,2001,41:433-445.
  • 4WANG XinghuaDepartment of Mathematics, Hangzhou University, Hangzhou 310028, China.Convergence on the iteration of Halley family in weak conditions[J].Chinese Science Bulletin,1997,42(7):552-555. 被引量:19
  • 5Han Danfu,Wang Xinghua.The error estimates of Halley's method[J].Numerical Math,1997,6(2):231-240.
  • 6Gutierrez J M,Hernandez M A.Recurrence relations for the Super-halley method[J].Comput Math Appl,1998,36 (7):1-8.
  • 7Hernandez M A.Chebyshev's Approximation Algorithms and Applications[J].Comp Math Appt,2001,41:433-445.
  • 8Ezquerro J A,Hernandez M A.A modification of the super-Halley method under mild differentiability conditions[J].H Comp Appl Math,2000,114:405-409.
  • 9郭学萍.避免二阶导数计值的迭代族的收敛性[J].工程数学学报,2001,18(4):29-34. 被引量:9
  • 10刘静,韩丹夫.一族二阶导数计值迭代方法的收敛性[J].浙江大学学报(理学版),2006,33(1):28-31. 被引量:1

二级参考文献17

  • 1Wang Xinghua,Chin Sci Bull,1997年,42卷,7期,552页
  • 2Han Danfu,计算数学,1997年,6卷,2期,231页
  • 3EZQUERRO J A,GUTIERREZ J M. The appication of an inverse-free Jarratt-type approximation to nonlinear integral equations of Hammerstein type[J]. Computer Math Applie, 1998,36 (4):9- 20.
  • 4YAMAMOTO T. A method for finding sharp error bounds for Newton' s method under the Kantorovich assumptions[J]. Numer Math, 1986,49 : 203-220.
  • 5GUTIERREZJ M, HERNANADEZ M A. Recurrence relations for the super-Halley method [J]. Comput Math Appl,1998,36(7) : 1-8.
  • 6GUTIERREZ J M, HERMANDEZ M A. A family ofChebyshev-Halley type methods in Banach spaces.[J]. Bull Aust Math Soe, 1997,55:113-130.
  • 7ARGYROS I K, CHEN DONG, QIAN Qing-han. An inverse-free Jarratt approximation in a Banach space[J]. Approx Theory and Its Appl, 1996,12(1):19-30.
  • 8Wang Xinghua.On the zeros of analytic functions. J. of Nature . 1981
  • 9Wang Xinghua,Zheng Shiming and Han Danfu.Convergence on Euler’s series, the iterations of Euler’s and Halley’s families. Acta Mathematics Sinica . 1990
  • 10Wang Xinghua.A summary on continuous complexity theory. Contemporary Mathematics . 1994

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部