期刊文献+

径向正解拐点的存在唯一性问题

Uniqueness of Inflection Points for Radial Positive Solutions
下载PDF
导出
摘要 设Ω是Rn中的环型区域,n>m>1.m-Laplace方程的边值问题是Δmu+f(u)=0,x∈Ω,u|Ω=0,讨论其径向正解的拐点,给出了一个拐点的存在唯一性结论. Let Ω is an annular domain in R^n, n 〉 m 〉 1. The paper concerns the boundary value problems of m- Laplace equations △mu+f(u)=0,x∈Ω,u|δΩ=0 and considers the inflection points for radial positive solutions and a result of uniqueness of inflection points is given.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2007年第2期86-88,共3页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10671169)
关键词 m-Laplace算子 环型区域 径向正解 拐点 m-Laplace operator annular domain radial positive solution inflection point
  • 相关文献

参考文献6

  • 1Iaia J. Apriori estimates and uniqueness of inflection points for positive solutions of semipositone problems [ J ]. Differential and Integral Equations, 1995, 8 (2) :393-403.
  • 2Iaia J. Uniqueness of inflection points for positive solutions of semilinear elliptic equation [ J ]. Nonlinear Analysis,2001, 47:3231-3233.
  • 3Tang M. Uniqueness of positive radial solutions for △u-u + u^p = 0 on an annulus [ J ]. J Differential Equation,2003, 189 : 148-160.
  • 4Yadava S L. Uniqueness of positive radial solutions of the Dirichlet problems -△u = u^p±u^q in an annulus [ J ]. J Differential Equations, 1997, 139:144-217.
  • 5Fu C, Lin S. Uniqueness of positive radial solutions for semilinear ellipitic equations on an annular domains [ J ].Nonlinear Analysis, 2001, 44:794-758.
  • 6Coffman C. Uniqueness of positive radial solution on an annulus of the Dirichlet problem for △u - u + u^3=0[J]. J Differential Equations, 1996, 128:379-386.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部