期刊文献+

有向染色体组移位排序距离的快速算法

Faster algorithm for computing translocation distance of sorting signed genomes
下载PDF
导出
摘要 目的寻找一种有向染色体组织移位排序距离的快速算法,解决其计算的复杂性问题。方法引入长圈的分裂和新的长圈分组算法,降低计算复杂性。结果原有的排序最好算法的复杂度为O(n^2),改进算法的复杂度为O(nlg·n)。结论改进算法能大大提高计算速度,避免了排序算法的NP难问题。 objective To find a fast algorithm for computing translocation distance of sorting signed genomes, and to solve the computational complexity of the algorithm. Methods We introduced the decomposition of long cycles and a new algorithm for grouping long cycles. Results The time complexity of the best known sorting algorithm is O( n^2 ) , and the time complexity of the improved algorithm is O ( nlg^* n). Conclusion The improved algorithm speeds up the computation greatly and avoids the NP-hardness of the sorting algorithm.
出处 《北京生物医学工程》 2007年第2期172-174,198,共4页 Beijing Biomedical Engineering
基金 国家自然科学基金(60371034)资助
关键词 染色体组排序 移位距离 计算分子生物学 sorting genomes translocation distance computational molecular biology
  • 相关文献

参考文献6

  • 1Hannenhalli S.Polynomial-time Algorithm for Computing Translocation Distance between Genomes CPM,1995:162-176
  • 2Hannenhalli S,Pevzner PA.Transforming cabbage into turnip(polynomial algorithm for sorting signed permutations by reversals) in Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing.Las Vegas,Nevada:1995.178-189
  • 3Kaplan H.Shamir R.Tarjan RE.Faster and simpler algorithm for sorting signed permutations by reversals SIAM Journal of Computing,2000,29 (3):880-892
  • 4Tesler G.Efficient algorithms for multichromosomal genome rearrangements.Journal of Computer and System Science,200265(3):587 -609
  • 5Christie DA.Genome Rearrangement Problems:[PhD thesis].Glasgow:University of Glasgow,1999
  • 6Sankoff D.El-Mabrouk N.Genome rearrangement.In Current Topics in Computational Molecular Biology.Boston:MIT Press,2002

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部