摘要
在数字复合正交神经网络的基础上提出一种模拟复合正交神经网络,并用于直流双闭环调速系统中。控制器采用模拟复合正交神经网络的直接自适应控制方法,并对带有负载干扰的直流双闭环调速系统作了PI控制与神经网络控制的仿真实验。仿真结果表明,相对于常规PI控制器,该神经网络控制器具有自学习,自适应功能,速度跟踪获得了满意的控制效果。该模拟神经控制器能用于直流与交流调速系统中。
This paper covers an analog compound orthogonal neural network controller and its application to two closed- loop DC speed governing system. PI and neural network controlled double closed - loop DC speed governing system simulations are performed respectively with load disturbance. The results show that the neutral network controller has shelf- learning and self- adaptive functions, and has better control effect in speed tracking, compared with traditional PI controller. The analog neutral controller can be applied to DC and AC speed governing system.
出处
《起重运输机械》
北大核心
2007年第4期79-81,共3页
Hoisting and Conveying Machinery
基金
浙江省自然科学基金资助项目(M603070)
关键词
直流调速系统
模拟复合正交神经网络
连续学习算法
自适应控制
DC speed governing system
analog compound orthogonal neural network
continuous learning algorithm
self - adaptive control