期刊文献+

基于纹理和位置特征的麦田杂草识别方法 被引量:36

Weed Detection Method in Wheat Field Based on Texture and Position Features
下载PDF
导出
摘要 以化学防除适期麦田杂草为研究对象,对利用条播作物的位置和纹理特征识别田间杂草的方法进行了研究。根据条播作物小麦作物行的间距相对固定等位置特征,利用植物像素直方图法确定作物行的中心线和行宽,并识别行间杂草。然后,以作物行中心为基准来选取纹理块,计算量化级数为8级的H颜色空间的共生矩阵,提取5个纹理特征参数,利用K均值聚类法判别分析各块的类别来识别行内杂草。研究结果表明,杂草的正确识别率约为93%,作物的错误识别率约为7%。 Take the weeds in wheat fields as the research object, a method of weed detection by using the texture and position features was studied. According to the position feature of drilled crops that were regularly sown as a constant row space, the pixel-histogram method was used to determine the central line and the width of crop row. As a result, weeds between crop rows were detected. Moreover, the block of texture was selected on the basis of the central line of crop row. The co-occurrence matrixes of the H color space that was quantified 8 levels were computed. Based on that, five texture parameters were extracted. Then, the K-means clustering method was used to recognize weeds within crop rows. The result of research showed that the correct classification of weeds was 93% and the mistake classification of crops was 7%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2007年第4期107-110,共4页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家"863"高技术研究发展计划资助项目(项目编号:2003AA209012 2003AA209040)
关键词 杂草识别 纹理特征 颜色共生矩阵 位置特征 Weed detection, Texture feature, Color co-occurrence matrix, Position feature
  • 相关文献

参考文献5

  • 1Shearer S A,Holmes R G. Plant identification using color co-occurrence matrices[J]. Transactions of the ASAE, 1990, 33(6):2 037-2 044.
  • 2Burks T F, Shearer S A, Gates R S. Backpropagation neural network design and evaluation for classifying weed species using color image texture[J]. Transactions of the ASAE, 2000, 43(4).1 029-1 037.
  • 3Meyer G E, Mehta T, Kocher M F, et al. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying[J]. Transactions of the ASAE, 1998, 41(4): 1 189-1 197.
  • 4毛文华 ,王一鸣 ,张小超 ,王月青 .基于机器视觉的苗期杂草实时分割算法[J].农业机械学报,2005,36(1):83-86. 被引量:44
  • 5毛文华,王一鸣,张小超,王月青.实时识别行间杂草的机器视觉系统(英文)[J].农业工程学报,2003,19(5):114-117. 被引量:9

二级参考文献22

  • 1Elfaki M S, Zhang N, Peterson D E. Weed detection using color machine vision[A]. ASAE Paper No. 973134,1997.
  • 2Felton W L, McCloy K R. Spot spraying [J].Agricultural Engineering, 1992,73 (6): 9-12.
  • 3Franz E, Gebhardt M R, Unklesbay K B. Shape description of completely visible and partially occluded leaves for identifying plants in digital images [J].Transactions of the ASAE, 1991,34(2) :673-681.
  • 4Ge Fan, Naiqian Zhang, Dallas E P, et al. Real-time weed detection using machine vision [A]. ASAE PaperNo. 983032, 1998.
  • 5Guyer D E, Miles G E, Gaulmey L D, et al. Application of machine vision to shape analysis in leaf and plant identification [J]. Transactions of ASAE, 1993, 36 ( 1 ) :163-171.
  • 6Lee W S, Slaughter D C, Giles D K. Robotic weed control system for tomatoes using machine vision system and precision chemicql application[A]. ASAE Paper No.973093, 1997.
  • 7Lee W S, Slaughter D C. Robitic weed control system for tomatoes[J]. Precision Agriculture, 1999,(1):95-113.
  • 8Meyer GE, Mehta T, Kocher M F, et al. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying[J]. Transactions of the ASAE, 1998,41(4) :1189-1197.
  • 9Pérez A J, Lbpez F, Benlloch J V, et al. Color and shape analysis techniques for weed detection in cereal fields[J].Computers and Electronics in Agriculture, 2000, (25) :197-212.
  • 10Slaughter D C, Curley R, Chen P, et al. Development of a robotic system for non-chemical weed control[A].Proceeding 44th Annual California Weed Conference,1992, Red Lion Hotel, Sacramento, CA.

共引文献50

同被引文献531

引证文献36

二级引证文献475

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部