期刊文献+

基于相空间优化近邻点的跳频预测方法研究 被引量:2

Study on Prediction of Frequency-hopping Pattern Based on Optimal Neighbor Pointsin Phase Space
下载PDF
导出
摘要 提出了一种基于混沌相空间重构理论的优化近邻点局部线性化跳频预测方法。根据相点的总体分布情况以及预测点与周围相点的加权距离确定近邻点,同时剔除“伪近邻点”,进而确定跳频预测方程。实验结果表明:该方法精度高且稳健,性能显著优于一般的预测方法。 Based on the theory of chaos phase space reconstruction, a local linear forecasting approach on selecting the optimal neighbor points is presented in this paper. Optimal neighbor points are acquired according to general distribution of space points and weighted distances between forecast points and their neighbor points. At the same time, false neighbor points are eliminated, then forecasting expression is gained. Experimental results show that proposed approach is robust and possesses higher prediction precision than that of other methods.
作者 汪斌 周辉
出处 《装备指挥技术学院学报》 2007年第2期85-88,共4页 Journal of the Academy of Equipment Command & Technology
关键词 频率预测 相空间重构 优化近邻点 frequency prediction phase space reconstruction optimal neighbor points
  • 相关文献

参考文献7

  • 1PACKARD N H.Geometry from a time series[J].Phys.Rev.Lett,1980(9):712-716.
  • 2TAKENS F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics,1980(10):366-381.
  • 3KEMBER G.A correlation function for choosing time delays in phase portrait reconstructions[J].Phys.Rev.Lett,1993(5):1331-1342.
  • 4RICK C H.Time series prediction by multivariate next neighbor methods with application to zooplankton forecasts[J].Mathematics and Computers in Simulation,2000(4):289-310.
  • 5ROSEN M T.Reconstruction expansion geometry based framework for choosing proper delay times[J].Physica D,1994(2):82-89.
  • 6GRASSBERGER P,PROCACCIA I.Characterization of strange attractors[J].Phys.Rev.Lett,1983(2):346-349.
  • 7李爱国,覃征.自适应局部线性化法预测混沌时间序列[J].系统工程理论与实践,2004,24(6):67-71. 被引量:9

二级参考文献9

  • 1[1]Farmer J D, Sidorowich J J. Predicting chaotic time series [J]. Phys Rev Lett, 1987,59: 845-848.
  • 2[2]Jayawardena A W, Li W K, Xu P. Neighbourhood selection for local modelling and prediction of hydrological time series[J]. Journal of Hydrology, 2002, 258: 40-57.
  • 3[3]Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length[J]. Physica D, 1996, 95: 13-28.
  • 4[4]Reick C H, Page B. Time series prediction by multivariate next neighbor methods with application to zooplankton forecasts[J]. Mathematics and Computers in Simulation, 2000, 52: 289-310.
  • 5[5]Kantz H, Schreiber T. Nonlinear Time Series Analysis[M]. Cambridge University Press, 1997 (清华大学出版社,2000,影印本).
  • 6[7]Kugiumtzis D, Ling O C, Christophersen N. Regularized local linear prediction of chaotic time series[J]. Physica D, 1998, 112:344-360.
  • 7[9]程云鹏.矩阵论(第2版)[M]. 西安: 西北工业大学出版社, 2002. 227-228.
  • 8孙海云,曹庆杰.混沌时间序列建模及预测[J].系统工程理论与实践,2001,21(5):106-109. 被引量:21
  • 9沈辉,胡德文.基于正交最小二乘估计的非线性时间序列的预测[J].国防科技大学学报,2001,23(2):115-118. 被引量:5

共引文献8

同被引文献13

  • 1蔡烽,万林,石爱国.基于相空间重构技术的舰船摇荡极短期预报[J].水动力学研究与进展(A辑),2005,20(6):780-784. 被引量:8
  • 2蔡烽.提升舰船作战使用海情关键技术研究[D].大连舰艇学院,2004.
  • 3陈予恕,张伟.船舶横摇运动的全局分岔和混沌动力学[J].现代数学和力学-Ⅵ,1998:455-459.
  • 4Hou Jianjun, Cai Feng, Shi Aiguo, et al. Chaotic dynamics analysis of ship motions[C]//Proceedings of the AsiaLink-EA- MARNET International Conference on Ship Design, Production & Operation. Harbin, China, 2007: 502-506.
  • 5Cai Minglun, Cai Feng, Shi Aiguo, Zhou Bo, Zhang Yongsheng. Chaotic time series prediction based on local-region multi-steps forecasting model[C]//In: IEEE International Symposium on Neural Networks (ISNN). Dalian, China, 2004.
  • 6蔡烽.提升舰船作战使用海情关键技术研究[D]大连:海军大连舰艇学院,2004.
  • 7王海燕;卢山.非线性时间序列分析及其应用[M]北京:科学出版社,2006.
  • 8吕金虎;陆君安;陈士华.混沌时间序列分析及其应用[D]武汉:武汉大学出版社,2002.
  • 9刘秉正.非线性动力学与混沌基础[M]长春:东北师范大学出版社,1994.
  • 10薛洁妮,史忠科.基于混沌时间序列分析法的短时交通流预测研究[J].交通运输系统工程与信息,2008,8(5):68-72. 被引量:47

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部