期刊文献+

基于贝叶斯网络的不确定环境下多属性决策方法 被引量:28

A Bayesian-Networks-Based Method for Multiple Attributes Decision-Making under Uncertainty
原文传递
导出
摘要 融合贝叶斯网络推理技术来求解不确定多属性决策问题,根据问题的决策变量、环境变量和多个属性之间的依赖关系构造贝叶斯网络,通过推理求解在各个方案下每个属性取值的概率分布,从而把问题转化成风险决策问题.采用此方法求解不确定环境下多属性决策问题时,决策者只需考虑节点与其父节点之间的依赖关系,降低了思考的复杂程度,适用于大规模的复杂问题求解.算例表明基于贝叶斯网络的求解方法对不确定环境下的多属性决策问题是有效的. A Bayesian-Networks-based method for multi-attributes decision making under uncertainty environment is proposed in this article. We construct Bayesian network based on the causality among decision variants, environment variants, and attributes. By the reasoning through the Bayesian network, the distribution of each attribute under each alternative can be calculated. Thus one complicated decision problem is modeled into a risky decision problem. By then, the decision makers can separately consider the relation between each node and its parents, and it's much easier than considering the distribution of attributes under the mass interactive influence factors condition. This method is appropriate for large scale, complicated problem. In the article, one sample is also proposed to demonstrate the application of this method.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第4期107-113,125,共8页 Systems Engineering-Theory & Practice
关键词 贝叶斯网络 不确定 多属性决策 Bayesian networks uncertainty multiple attributes decision-making
  • 相关文献

参考文献8

  • 1Jose Figueira,Savatore Greco,Matthias Ehrgott.Multiple Criteria Decision Analysis:State of the ART Surveys[M].Springer Science + Business Media,Inc.2005.
  • 2陈珽.决策分析[M].北京:科学出版社,1997..
  • 3Stuart Russell,Peter Norvig.人工智能-一种现代方法(第二版)[M].北京:人民邮电出版社,2004.
  • 4Shachter R D.Bayes-ball:The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams)[C]//Uncertainty in Artificial Intelligence:Proceedings of the Fourteenth Conference,480-487,Madison,Wisconsin.Morgan Kaufmann.1998.
  • 5Bjφrn Axel Gran,Atte Helminen.A bayesian belief network for reliability assessment.U[J].Voges (Ed.):Safecomp,2001,LNCS 2187,35-45,2001.
  • 6李俭川,胡茑庆,秦国军,温熙森.基于贝叶斯网络的故障诊断策略优化方法[J].控制与决策,2003,18(5):568-572. 被引量:21
  • 7Kevin Murphy.Bayes Net Toolbox for Matlab[EB/OL].http://bnt.sourceforge.net.
  • 8Kevin Murphy.How to use the Bayes Net Toolbox[EB/OL].http://bnt.sourceforge.net/usage.html.

二级参考文献9

  • 1Coper G F. The computational complexity of probabilistic inference using Bayesian belief networks[J].Artificial Intelligence, 1990, 42 (2-3) : 393-405.
  • 2Poole D. Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities [A].Proc 13th Int J Conf on Artificial Intelligence [C ].France, 1993. 606-612.
  • 3Skaanning C,Jensen F V,Kjaerulff U. Printer troubleshooting using Bayesian networks [A]. Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE) 2000[C]. New Orleans,2000. 101-108.
  • 4Stephenson T A. An introduction to Bayesian network theory and usage[R]. Switzerland: IDIAP-RR 00-03,Dale Molle Institute, 2000.
  • 5Lepar V, Shenoy P P. A comparison of lauritzen and spiegelhalter, hugin and sharer and shenoy architectures for computing marginals of probability distributions [A]. The Proc of the 14th Conf on Uncertainty in Artificial Intelligence [ C ]. San Francisco: Morgan Kaufmann Publishers, 1998. 328-337.
  • 6Bresnick T A, Buede D M, Tatman J A. Introduction to Bayesian networks[A]. The 66th MORS Symposium[C]. California: Naval Postgraduate School Monterey,1998.23-25.
  • 7Breese J S, Heckerman D. Decision-theoretic troubleshooting: A framework for repair and experiment[A].Proc 12th Conf on Uncertainty in Artificial Intelligence[C]. San Praneiseo: Morgan Kaufmann Publishers,1996. 124-132.
  • 8Heckerman D, Breese J, Rommelse K. Decision-theoretic troubleshooting[J]. Communications of the ACM ,1995,38(3) :49-57.
  • 9刘刚,杨世凤,马跃进,邝朴生.设备故障诊断步骤优化的研究[J].农业工程学报,1997,13(4):125-129. 被引量:8

共引文献31

同被引文献322

引证文献28

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部