摘要
设A是一个含单位元I的代数,M表示A的又模,若δ是A到M的线性映射,且a,b∈A,都有(δab)=(δb)a+bδ(a)-bδ(I)a,则称δ是广义反导子.证明了当m≥n时,从上三角矩阵代数Tn到其双模Mm上不存在真的广义反导子.
Let A be an algebra with identity I, and let M denote bimodule of A. A linear map δ: A→M is called generalization antiderivation if δ(ab)=δ(b)a+bδ(a)-bδ(I)a, for all a, b∈A. In this paper, it is shown that if m≥n, then there is no proper generalized antiderivation from upper triangular algebra Tn into its bimodule Mm.
出处
《纺织高校基础科学学报》
CAS
2007年第1期6-8,共3页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10571115)
关键词
上三角矩阵代数
广义导子
广义反导子
upper triangular matrix algebra
generalized derivation
generalized antiderivation