期刊文献+

广义反导子 被引量:1

Generalized antiderivation on upper triangule matrix algebras
下载PDF
导出
摘要 设A是一个含单位元I的代数,M表示A的又模,若δ是A到M的线性映射,且a,b∈A,都有(δab)=(δb)a+bδ(a)-bδ(I)a,则称δ是广义反导子.证明了当m≥n时,从上三角矩阵代数Tn到其双模Mm上不存在真的广义反导子. Let A be an algebra with identity I, and let M denote bimodule of A. A linear map δ: A→M is called generalization antiderivation if δ(ab)=δ(b)a+bδ(a)-bδ(I)a, for all a, b∈A. In this paper, it is shown that if m≥n, then there is no proper generalized antiderivation from upper triangular algebra Tn into its bimodule Mm.
作者 马飞 王红霞
出处 《纺织高校基础科学学报》 CAS 2007年第1期6-8,共3页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10571115)
关键词 上三角矩阵代数 广义导子 广义反导子 upper triangular matrix algebra generalized derivation generalized antiderivation
  • 相关文献

参考文献9

  • 1HERSTEIN I N.Jordan derivations of prime rings[J].Proc Amer Math Soc,1957(8):1 104-1 110.
  • 2朱军,熊昌萍.环上的广义导子与Von Neumann代数上的P-核值保持映射[J].数学学报(中文版),1998,41(4):795-800. 被引量:19
  • 3JING W,LU S J.Generalized Jordan derivations on prime rings and standard operator algebras[J].Taiwan Residents J Math,2003 (4):605-613.
  • 4BENKOVIC D.Jordan derivations andantiderivations on triangular matrices[J].Linear Algebra Appl,2005,397:235-244.
  • 5BRESAR M.Jordan derivation on semiprime rings[J].J Algebra,1089,127:L218-228.
  • 6CUI J,HOU J,LI B.Linear preservers on upper triangular operator matrix algebras[J],Linear Algebra Appl,2001,336:29-50
  • 7CUSACK J M.Jordan derivations on rings[J].Proc Amer Math Soc,1975,53:321-324.
  • 8KADISION R V.Local derivations[J].J Algebra,1990,130(2):494-509.
  • 9张建华.套代数上的Jordan导子[J].数学学报(中文版),1998,41(1):205-212. 被引量:16

二级参考文献3

共引文献30

同被引文献15

  • 1You Hong, Liu Shaowu, Zhang Guodong. Rank one preserving R-linear maps on spaces of self-adjoint operators on complex Hilbert space [J]. Linear Algebra Appl., 2006, 416: 568-579.
  • 2Benkovic D. Jordan derivations and antiderivations on triangular matrices [J]. Linear Algebra Appl., 2005, 397: 235-244.
  • 3Ma Fei, Ji Guoxing. Generalized Jordan derivation on triangular algebra [J]. Linear and Multilinear Algebra, 2007, 55: 355-363.
  • 4Herstein I N. Jordan derivations of prime rings [J]. Proc. Amer. Math. Soc., 1957, 8: 1104-1110.
  • 5Bresar M. Jordan derivation on semiprime rings [J]. J. algebra, 1989, 127: 218-228.
  • 6Zhu Jun, Xiong Changping. Generalized derivations on rings and mappings of P-preserving kernel into range on Von neumann algebras [J]. Acta math. sinica, 1998, 41: 795-800.
  • 7Cui Jianlian, Hou Jingchuan, Li Bin. Linear preservers on upper triangular operator matrix algebras [J]. Linear Algebra Appl,, 2001, 336: 29-50.
  • 8Cusack J M. Jordan derivations on rings [J]. Proc. Amer. Math. soc., 1975, 53: 321-32L1.
  • 9Jing Wu, Lu Shijie. Generalized Jordan derivations on prime rings and standard operator algebras [J]. Taiwan Residents J. Math., 2003, 7(4): 605-613.
  • 10Johnson B E. Symmetric amenability and the nonexistence of Lie and Jordan derivation [J]. Math. Proc. Cambd. Philos. Soc., 1996, 120: 455-473.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部